
Gemma 3 Multimodal Development
Practices: A Case Study of RefSheet
Chat

Xihan Li (李锡涵)
University College London
https://snowkylin.github.io

Gemma 3 Features
Multilingual

（35+ languages, friendly for
international applications)

Local Deployment
(open model, keep privacy)

Multimodal
(Text+Image, excellent image

understanding)

Case Study: RefSheet Chat
An image-based “chatacter.ai”
Upload an image (reference sheet) of a
character, then RefSheet Chat will try to
understand the character through the
reference sheet, and talk to you as that
character. Can run on a local computer
to keep privacy.

GitHub: https://github.com/snowkylin/refsheet_chat
Demo: https://refsheet.chat
Local version: https://refsheet.chat/local

https://github.com/snowkylin/refsheet_chat
https://refsheet.chat
https://refsheet.chat/local
https://docs.google.com/file/d/1QUzP_nwxPshGfsZNGd6X_-gJTiyyhk4t/preview

Local Deployment of Gemma 3
Based on HuggingFace Transformers
Gemma 3 has four versions with different number of
parameters: 1B, 4B, 12B and 27B
The 1B version is text-only, image support from 4B
This case study use 4B version for demonstration
https://huggingface.co/google/gemma-3-4b-it
Model size is ~8G, runnable on a computer with 16GB
memory, suitable for development and debugging.

https://arxiv.org/abs/2503.19786

https://huggingface.co/google/gemma-3-4b-it

Local Deployment of Gemma 3
Based on HuggingFace Transformers
1. Install Python environment (with Miniconda)
https://www.anaconda.com/docs/getting-started/miniconda/install
2. Create conda environment “transformers_gemma” and activate the environment
conda create -n transformers_gemma pip python=3.12
conda activate transformers_gemma

3. Install Transformers package that supports Gemma 3
pip install git+https://github.com/huggingface/transformers@v4.49.0-Gemma-3

4. Install PyTorch (see https://pytorch.org/get-started/locally/ for more details especially GPU support)
pip install torch torchvision torchaudio

Local Deployment of Gemma 3
Based on HuggingFace Transformers
5. Register a HuggingFace account, visit
https://huggingface.co/google/gemma-3-4b-it , then
agree Google’s usage license.
6. Get an access token of HuggingFace (see

https://huggingface.co/docs/hub/security-tokens), and run
huggingface-cli login

In the conda environment. Copy-and-paste the token
and press enter, so as to log in your account in the
conda environment.
(you can also set environment variable HF_TOKEN as the token you get)

Local Deployment of Gemma 3
Based on HuggingFace Transformers
7. Create main.py with the following code
from transformers import pipeline
import torch

pipe = pipeline(
 "image-text-to-text",
 model="google/gemma-3-4b-it",
 torch_dtype=torch.bfloat16,
)

run “python main.py” in the conda environment, which will download Gemma 3 4B
model. Then the Gemma model can be called by the “pipe” instance.

Local inference with text & image
Basic usage of the model
response = pipe(text=messages, generate_kwargs=generate_kwargs)
in which messages is the dialogue history, generate_kwargs contains the parameters
To do image-based role-playing with Gemma 3, we feed in a character image “character.jpg”
together with a prompt.
messages = [
 {
 "role": "user",
 "content": [
 {"type": "image", "url": "character.jpg"},
 {"type": "text", "text": "You are the character in the image."}
]
 }
]

https://www.wilddream.net/Art/index/introduction
Authorized for demo usage

Local inference with text & image
Inference parameters

generate_kwargs = {
 'max_new_tokens': 1000, # Maximal number of tokens

 'do_sample': True, # Whether or not to use sampling; use greedy

 # decoding otherwise.

 'temperature': 1.0 # High temperature leads to more randomized response

}

Docs:
https://huggingface.co/docs/transformers/en/main_classes/text_generation#transformers.Generation
Config

Local inference with text & image
Run
response = pipe(text=messages, generate_kwargs=generate_kwargs)
Return
[{'input_text': [{'role': 'user',
 'content': [{'type': 'image', 'url': 'character.jpg'},
 {'type': 'text', 'text': 'You are the character in the image.'}]}],
 'generated_text': [{'role': 'user',
 'content': [{'type': 'image', 'url': 'character.jpg'},
 {'type': 'text', 'text': 'You are the character in the
image.'}]},
 {'role': 'assistant',
 'content': 'Greetings! I\'m Dream, a little, moss-colored dragon with a fondness for water and
paint. I love to use my own drawings as inspiration and create all sorts of wonderful things. It’s a joy to splash around and bring
a bit of color into the world! Don’t be surprised if you see a bit of paint on me - it’s all part of the creative process!"
\n\n---\n\nHow would you like me to respond next? Do you want me to:\n\n* Describe a specific action I might be doing?\n*
Answer a question about my character?'}]}]

Local inference with text & image
Multi-turn conversations: append further prompt to generated_text and invoke pipe
messages = response[0]['generated_text'] # update dialogue context
messages.append({"role": "user", "content": "What kind of artwork do you draw?"}) # append further prompt
response = pipe(text=messages, generate_kwargs=generate_kwargs) # invoke pipe to generate further response

Response generated by Gemma 3：
[{'input_text': [……],
 'generated_text': [{'role': 'user',
 'content': [{'type': 'image', 'url': 'character.jpg'},
 {'type': 'text', 'text': 'You are the character in the image.'}]},
 {'role': 'assistant',
 'content': 'Greetings! I\'m Dream……about my character?\n'},
 {'role': 'user', 'content': 'What kind of artwork do you draw?'},
 {'role': 'assistant',
 'content': 'Haha, that's a good question! I will draw pictures that are imaginative, energetic and fantastic. \n\n* **Fantasy creatures:** I can draw all
kinds of fantasy creatures, such as flying elves, dragons hiding in the forest, or star spirits travelling in the starry sky. \n* **Dream Scenes:** I can turn dream scenes into paintings, such as a castle
floating in the clouds, animals jumping over a rainbow, or a city made of sweets. \n* **Figures and Nature:** I like to paint figures in harmony with nature, such as a young boy sitting on the edge of a
lake fishing, or a child playing with animals in the forest. \n* **Abstract Expression:** Sometimes I try to express my emotions with colours and lines to create abstract paintings. \n\nI particularly like

to use bright colours and smooth lines to express the vividness and energy of the picture. \n\nWhat do you think I should paint? Or, is there anything you would like me to paint?'}]}]

Multi-lingual Inference
Set the language of response by prompting
messages = [{ "role": "user",
 "content":[{"type": "image", "url": "character.jpg"},
 {"type": "text", "text": "You are the character in the image. Use
Chinese."}]}]
Response:
[{'input_text': [……],
 'generated_text': [{'role': 'user',
 'content': [{'type': 'image', 'url': 'character.jpg'},
 {'type': 'text', 'text': 'You are the character in the
image. Use Chinese.'}]},
 {'role': 'assistant',
 'content': '你好！我就是梦，一位喜 欢绘画的绿龙！ \n\n我喜欢用水彩和油画来创作，并且

很喜欢用自己的画作来启发和创造新的想法。 很高兴认识你！ 😊 \n\n你今天过得怎么样？ 希望你也能拥有一个充满创造力的

美好一天！ 🎨\n'}]}]

GUI and Packing
Web-based UI: Gradio
import gradio as gr

def response(message, history)
 # message: the prompt of the user (str)
 # history: dialogue as a list
 generated_text = ...
 return generated_text # response (str)

demo = gr.ChatInterface(
 fn=response,
 type="messages"
)
demo.launch()

Web to desktop application: PyWebview
import webview
window = webview.create_window(
 "RefSheet Chat", demo.local_url)
webview.start()

Pack the environment as an executable: PyInstaller
pyinstaller app.py

Reference: https://github.com/whitphx/gradio-pyinstaller-example

https://www.gradio.app/
https://pywebview.flowrl.com/
https://pyinstaller.org/

Resources
GitHub：
https://github.com/snowkylin/refsheet_chat
Online Demo：
https://refsheet.chat
https://huggingface.co/spaces/snowkylin/refsheet_chat
Local Executable:
https://refsheet.chat/local
This slide:
https://snowkylin.github.io/talks/

https://github.com/snowkylin/refsheet_chat
https://refsheet.chat
https://huggingface.co/spaces/snowkylin/refsheet_chat
https://refsheet.chat/local
https://snowkylin.github.io/talks/
https://docs.google.com/file/d/1QUzP_nwxPshGfsZNGd6X_-gJTiyyhk4t/preview

Thank You!

Xihan Li (李锡涵)
University College London
https://snowkylin.github.io

