

Single-Agent Reinforcement Learning

Xihan Li Department of Computer Science, University College London <u>xihan.li@cs.ucl.ac.uk</u> <u>https://snowkylin.github.io</u>

Feb 2025

Contents

- 1. Basic Game Theory and Nash Equilibrium
- 2. Potential Games and Best Respond Dynamics
- 3. Repeated Games and the Theory of Cooperation
- 4. Adversarial and Minimax Games
- 5. Bi-level Games and General-Sum Games and L-H Algorithms
- 6. Single-agent Reinforcement Learning and MDP
- 7. Learning Stochastic Games
- 8. Non-regret Learning and Correlated Equilibrium
- 9. Counterfactual Regret Minimisation
- 10. Learning with a Population of Agents

We are here

Outline

Cornerstones	Value-based RL - Model-based Learning	Value-based RL – Model-Free Learning	Policy-based RL
 Markov Decision Process (MDP) Bellman Equation 	Dynamic ProgrammingPolicy IterationValue Iteration	Temporal-Difference Learning • SARSA • Q-Learning	Policy Gradient

Reinforcement Learning (RL)

AlphaGo in playing Go (MCTS+RL) OpenAl's Dactyl in solving Rubik's Cube with a robot hand (Robotic+RL) DeepSeek R1 in solving math problems (LLM+RL)

History of Reinforcement Learning

Markov Decision Process: A Deterministic Example

- A robot moves in a grid world
- The robot (called agent) can move across adjacent cells in the grid.
- Target: find a "good" policy that enables it to reach the target cell, when starting from any initial cell. The agent should reach the target without
 - entering any trap cells
 - taking unnecessary detours
 - colliding with the boundary of the grid

Markov Decision Process: State, Action and State Transition

State

9 cells \rightarrow 9 states State space: all states in the problem, $S = \{s_1, \dots, s_9\}$ Action

Move up, right, down, left and stay still Action space: all possible actions in the problem, $A = \{a_1, \dots, a_5\}$

State Transition

Given a state *s* and an action *a*, what will be the next state P(s, a)?

e.g., $P(s_1, a_1) = s_2$, $P(s_5, a_3) = s_8$

State \ Action	a_1 (\uparrow)	<i>a</i> ₂ (→)	a₃ (↓)	<i>a</i> ₄ (←)	<i>a</i> ₅ (o)
<i>s</i> ₁	<i>S</i> ₁	<i>S</i> ₂	S ₄	<i>S</i> ₁	<i>S</i> ₁
<i>s</i> ₂					
<i>s</i> ₃					
<i>S</i> ₄					
<i>s</i> ₅					
<i>s</i> ₆					
<i>S</i> ₇					
s ₈					
S ₉	s ₆	<i>S</i> 9	S9	<i>S</i> ₈	<i>S</i> 9

≜UCL

Markov Decision Process: Reward and Agent's Policy

S_1 S_2 S_3 S_4 S_5 $\begin{array}{c} S_6\\ (Trap) \end{array}$ $\begin{array}{c} S_7\\ (Trap) \end{array}$ S_8 $\begin{array}{c} S_9\\ (Target) \end{array}$

- If the agent attempts to exit the boundary, let r = −1.
- If the agent attempts to enter a forbidden cell, let r = −1.
- If the agent reaches the target state, let r = +1.
- Otherwise, the agent obtains a reward of r = 0.

Reward

After executing an action a at a state s, the agent obtains a reward, denoted as r(s, a), as feedback from the environment.

State \ Action	a_1 (†)	$a_2 (\rightarrow)$	a ₃ (↓)	<i>a</i> ₄ (←)	<i>a</i> ₅ (o)
<i>s</i> ₁	-1	0	0	-1	0
<i>S</i> ₂	-1	0	0	0	0
<i>S</i> ₃	-1	-1	-1	0	0
<i>S</i> ₄	0	0	-1	-1	0
<i>S</i> ₅	0	-1	0	0	0
<i>s</i> ₆	0	-1	+1	0	-1
<i>S</i> ₇	0	0	-1	-1	-1
<i>S</i> ₈	0	+1	-1	-1	0
S9	-1	-1	-1	0	+1

Agent's Policy

Which actions to take at every state *s*. E.g., the robot can take two different policies $\pi_1(s)$ and $\pi_2(s)$ are as follows

State	$\pi_1(s)$	$\pi_2(s)$	
<i>s</i> ₁	\rightarrow	\downarrow	\rightarrow
<i>s</i> ₂	\downarrow	\downarrow	\rightarrow
<i>S</i> ₃	←	\downarrow	\rightarrow
S ₄	\rightarrow	\downarrow	
<i>S</i> ₅	\downarrow	\downarrow	
s ₆	\downarrow	\downarrow	↓
<i>S</i> ₇	\rightarrow	\rightarrow	
<i>S</i> ₈	\rightarrow	\rightarrow	↓
<i>S</i> 9	0	0	\rightarrow

Markov Decision Process: Trajectory and Return

Trajectory

 $\begin{array}{c|c} \pi_1 \\ \hline \rightarrow & \downarrow & \leftarrow \\ \hline \rightarrow & \downarrow & \downarrow \\ \rightarrow & \downarrow & \downarrow \\ \hline \rightarrow & \downarrow & - \bullet \\ \hline \end{array}$

 $\begin{array}{c|c} \pi_2 \\ \downarrow & \downarrow & \downarrow \\ \downarrow & \downarrow & \downarrow \\ \hline \downarrow & ----o \end{array}$

Given an initial state s_{init} and the agent's policy π , the agent can start from s_{init} and recurrently follow π to take actions.

 $s_0 = s_{init}$ For t = 0, 1, ...

- take an action $a_t \leftarrow \pi(s_t)$
- obtain a reward $R_t \leftarrow r(s_t, a_t)$
- transit to a new state $s_{t+1} \leftarrow P(s_t, a_t)$

For example:

 π_1 , start from s_1 : $s_1 \xrightarrow[r=0]{a_2} s_2 \xrightarrow[r=0]{a_3} s_5 \xrightarrow[r=0]{a_3} s_8 \xrightarrow[r=1]{a_2} s_9$ π_2 , start from s_1 : $s_1 \xrightarrow[r=0]{a_3} s_2 \xrightarrow[r=-1]{a_3} s_5 \xrightarrow[r=0]{a_3} s_8 \xrightarrow[r=1]{a_2} s_9$

Return (value) of a trajectory

Given an initial state *s* and the agent's policy π , the return (value) $V_{\pi}(s)$ is the sum of all rewards on the trajectory

E.g., for the two trajectories, their return is

 $V_{\pi_1}(s_1) = 0 + 0 + 0 + 1 = 1$ $V_{\pi_2}(s_1) = 0 - 1 + 0 + 1 = 0$

We would like to find a policy for the agent that maximize its return. Therefore, return can be used to evaluate policies.

• For the example, $V_{\pi_1}(s_1) > V_{\pi_2}(s_1)$ so policy π_1 is better than policy π_2

Policy Evaluation and Bellman Equation

Given the agent's policy π , policy evaluation is to compute $V_{\pi}(s)$ for all $s \in S$

For a given π , this can be done by listing the trajectory for each state and add up the rewards

However, we have a more general way to evaluate the policy with **Bellman equation**.

Note that each return consists of an immediate reward and future rewards.

- Immediate reward: the reward obtained after taking an action $a = \pi(s)$. That is, $r(s, \pi(s))$
- Future rewards: the return of the trajectory starting at the next state s' = P(s, π(s))
 Therefore,

$$V_{\pi}(s) = r(s,\pi(s)) + V_{\pi}(s')$$

Which is the Bellman equation

Policy Evaluation with Bellman Equation

Given the Bellman equation $V_{\pi}(s) = r(s, \pi(s)) + V_{\pi}(s')$ Immediate return starting

reward from next state We take π shown on the left as an example:

$$V_{\pi}(s_{1}) = 0 + V_{\pi}(s_{4})$$

$$V_{\pi}(s_{2}) = 0 + V_{\pi}(s_{5})$$

$$V_{\pi}(s_{3}) = -1 + V_{\pi}(s_{6})$$

$$V_{\pi}(s_{4}) = -1 + V_{\pi}(s_{7})$$

$$V_{\pi}(s_{5}) = 0 + V_{\pi}(s_{8})$$

$$V_{\pi}(s_{6}) = 1 + V_{\pi}(s_{9})$$

$$V_{\pi}(s_{7}) = 0 + V_{\pi}(s_{8})$$

$$V_{\pi}(s_{8}) = 1 + V_{\pi}(s_{9})$$

$$V_{\pi}(s_{9}) = 0$$

Let $V_{\pi} = (V_{\pi}(s_1), ..., V_{\pi}(s_9))^{\mathsf{T}}$, we have the following matrix form of the equations:

$$V_{\pi} = AV_{\pi} + b$$

This is a type of fixed-point equation

x = f(x) in which f(x) = Ax + b

that can be solved by fixed-point iteration as follows:

Randomly initialize xwhile $|x - f(x)| > \epsilon$: $x \leftarrow f(x)$

Policy Improvement

Policy improvement: update $\pi(s)$ for a larger $V_{\pi}(s)$ Recall the Bellman equation

 $V_{\pi}(s) = r(s, \pi(s)) + V_{\pi}(s') = r(s, \pi(s)) + V_{\pi}(P(s, \pi(s)))$ How should we update $\pi(s)$ to enlarge $V_{\pi}(s)$?

$\pi(s_1)$	$V_{\pi}(s_1) = r(s_1, \pi(s_1)) + V_{\pi}(P(s_1, \pi(s_1)))$	
$a_1 \left(\uparrow ight)$	$r(s_1, a_1) + V_{\pi}(P(s_1, a_1)) = -1 + V_{\pi}(s_1) = -1$	-
$a_2 (ightarrow)$	$r(s_1, a_2) + V_{\pi}(P(s_1, a_2)) = 0 + V_{\pi}(s_2) = 1$	
a_3 (\downarrow)	$r(s_1, a_3) + V_{\pi}(P(s_1, a_3)) = 0 + V_{\pi}(s_4) = 0$	largest
$a_4~(\leftarrow)$	$r(s_1, a_4) + V_{\pi}(P(s_1, a_4)) = -1 + V_{\pi}(s_1) = -1$	
<i>a</i> ₅ (0)	$r(s_1, a_5) + V_{\pi}(P(s_1, a_5)) = 0 + V_{\pi}(s_1) = 0$	

Let

 $q_{\pi}(s,a) = r(s,a) + V_{\pi}(P(s,a))$ Then we update $\pi(s)$ by $\pi'(s) = \arg \max_{a} q_{\pi}(s,a)$ for each $s \in S$

For the grid world example, we improve

•
$$\pi'(s_1) \leftarrow \arg \max_a q_\pi(s_1, a) = a_2$$

•
$$\pi'(s_3) \leftarrow \arg \max_a q_\pi(s_3, a) = a_4$$

•
$$\pi'(s_4) \leftarrow \arg \max_a q_{\pi}(s_4, a) = a_2$$

(marked in red)

The policy π is optimal when we cannot do any further improvement. I.e.,

 $\pi(s) = \arg \max_{a} q_{\pi}(s, a) \text{ for all } s \in S$

Policy Iteration

We iteratively do policy evaluation and improvement, until no further improvement can be done.

```
Randomly initialize \pi(s) and V_{\pi}(s)
```

While True:

While $|V_{\pi}(s) - (R + V_{\pi}(s'))| > \epsilon$: $V_{\pi}(s) \leftarrow R + V_{\pi}(s')$ for all $s \in S$ $\pi'(s) \leftarrow \arg \max_{a} q_{\pi}(s, a)$ for all $s \in S$

if $\pi'(s) = \pi(s)$: break $\pi(s) \leftarrow \pi'(s)$ **Policy evaluation**: compute $V_{\pi}(s)$ for the current policy $\pi(s)$ by fixed-point iteration

Policy improvement: improve $\pi(s)$ by selecting the action *a* with maximal q(s, a)

 $R = r(s, \pi(s))$ is the immediate reward $s' = P(s, \pi(s))$ is the next state $q_{\pi}(s, a) = r(s, a) + V_{\pi}(P(s, a))$

Value Iteration

Recall that the policy π is optimal when we cannot do any further improvement. I.e., $\pi^*(s) = \arg \max_a q(s, a)$ for all $s \in S$

So for an optimal policy π^* , its value function

$$W_{\pi^*}(s) = q_{\pi^*}(s, \pi(s))$$

will always equal to the maximal one among q(s, a). I.e.,

$$V_{\pi^*}(s) = \max_{a} q_{\pi}(s, a)$$
$$V_{\pi^*}(s) = \max_{a} \left(r(s, a) + V_{\pi^*}(P(s, a)) \right)$$

This is also a fixed-point equation that can be solved by fixed-point iteration.

Randomly initialize
$$V_{\pi}(s)$$

While $|V_{\pi}(s) - \max_{a} (r(s,a) + V_{\pi}(P(s,a)))| > \epsilon$:
 $V_{\pi}(s) \leftarrow \max_{a} (r(s,a) + V_{\pi}(P(s,a)))$ for all $s \in S$
 $\pi(s) \leftarrow \arg\max_{a} q_{\pi}(s,a)$ for all $s \in S$

≜ UCL

Value Iteration

<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	
S ₄	\$ ₅	S ₆ (Trap)	
S ₇ (Trap)	<i>S</i> ₈	S9 (Target)	

State \ Action	a₁ (↑)	a₂ (→)	a ₃ (↓)	a₄ (←)	a ₅ (0)
<i>s</i> ₁	-1	0	0	-1	0
<i>s</i> ₂	-1	0	0	0	0
<i>S</i> ₃	-1	-1	-1	0	0
S ₄	0	0	-1	-1	0
<i>s</i> ₅	0	-1	0	0	0
s ₆	0	-1	+1	0	-1
<i>S</i> ₇	0	0	-1	-1	-1
s ₈	0	+1	-1	-1	0
S9	-1	-1	-1	0	+1

Example:

$$V_{\pi^*}(s) = \max_{a \in \{a_1, \dots, a_5\}} \left(r(s, a) + V_{\pi^*}(P(s, a)) \right)$$

$$V_{\pi^*}(s_1) = \max\left(-1 + V_{\pi^*}(s_1), 0 + V_{\pi^*}(s_2), 0 + V_{\pi^*}(s_4), -1 + V_{\pi^*}(s_1), 0 + V_{\pi^*}(s_1) \right)$$

$$V_{\pi^*}(s_2) = \max\left(-1 + V_{\pi^*}(s_2), 0 + V_{\pi^*}(s_3), 0 + V_{\pi^*}(s_5), 0 + V_{\pi^*}(s_1), 0 + V_{\pi^*}(s_2) \right)$$

$$V_{\pi^*}(s_3) = \max\left(-1 + V_{\pi^*}(s_3), -1 + V_{\pi^*}(s_3), -1 + V_{\pi^*}(s_6), 0 + V_{\pi^*}(s_2), 0 + V_{\pi^*}(s_3) \right)$$

$$V_{\pi^*}(s_4) = \max\left(0 + V_{\pi^*}(s_1), 0 + V_{\pi^*}(s_5), -1 + V_{\pi^*}(s_7), -1 + V_{\pi^*}(s_4), 0 + V_{\pi^*}(s_4) \right)$$

$$V_{\pi^*}(s_5) = \max\left(0 + V_{\pi^*}(s_2), -1 + V_{\pi^*}(s_6), 0 + V_{\pi^*}(s_8), 0 + V_{\pi^*}(s_4), 0 + V_{\pi^*}(s_5) \right)$$

$$V_{\pi^*}(s_6) = \max\left(0 + V_{\pi^*}(s_3), -1 + V_{\pi^*}(s_6), +1 + V_{\pi^*}(s_9), 0 + V_{\pi^*}(s_3), -1 + V_{\pi^*}(s_6) \right)$$

$$V_{\pi^*}(s_8) = \max\left(0 + V_{\pi^*}(s_5), +1 + V_{\pi^*}(s_8), -1 + V_{\pi^*}(s_8), -1 + V_{\pi^*}(s_2), 0 + V_{\pi^*}(s_8) \right)$$

$$V_{\pi^*}(s_9) = 0$$

Let $V_{\pi^*} = (V_{\pi^*}(s_1), \dots, V_{\pi^*}(s_9))^{\mathsf{T}}$, we have $V_{\pi^*} = f(V_{\pi^*})$ in which $f(V_{\pi^*}) = \max(A_1V_{\pi^*} + b_1, A_2V_{\pi^*} + b_2, A_3V_{\pi^*} + b_3, A_4V_{\pi^*} + b_4, A_5V_{\pi^*} + b_5)$

Its convergence can be proved with contraction mapping theorem

Stochastic Cases

	Deterministic	Stochastic
State Transition	P(s,a) = s'	P(s' s, a) is the conditional probability of transition from (s, a) to s' . $\sum_{s' \in S} P(s' s, a) = 1$
Agent's Policy	$\pi(s) = a$	$\pi(a s)$ is the conditional probability from s to a, $\sum_{a \in A} \pi(a s) = 1$
Return (Value)	$V_{\pi}(s) = R_1 + R_2 + \cdots$	$V_{\pi}(s) = \mathbb{E}[R_1 + R_2 + \cdots]$ (the expectation of total rewards)
Bellman Equation	$V_{\pi}(s) = r(s, \pi(s)) + V_{\pi}(s')$ in which $s' = P(s, \pi(s))$	$V_{\pi}(s) = \sum_{a \in A} \pi(a s)[r(s,a) + \sum_{s' \in S} P(s' s,a) V_{\pi}(s')]$
Action-Value Function	$q(s,a) = r(s,a) + V_{\pi}(P(s,a))$ $V_{\pi}(s) = q(s,\pi(s))$	$q(s,a) = r(s,a) + \sum_{s' \in S} P(s' s,a) V_{\pi}(s')$ $V_{\pi}(s) = \sum_{a \in A} \pi(a s)q(s,a)$

Decay factor γ

- Future rewards should be "less important"
- Sometimes critical for convergence
- γ is typically a number a bit less than 1 (e.g., 0.99)

	Without decay factor	With decay factor
Return (Value)	$V_{\pi}(s) = \mathbb{E}[R_1 + R_2 + R_3 + \cdots]$	$V_{\pi}(s) = \mathbb{E}[R_1 + \gamma R_2 + \gamma^2 R_3 + \cdots]$
Bellman Equation	$V_{\pi}(s) = \sum_{a \in A} \pi(a s)[r(s,a) + \sum_{s' \in S} P(s' s,a) V_{\pi}(s')]$	$V_{\pi}(s) = \sum_{a \in A} \pi(a s) [r(s,a) + \gamma \sum_{s' \in S} P(s' s,a) V_{\pi}(s')]$
Action-Value Function	$q(s,a) = r(s,a) + \sum_{s' \in S} P(s' s,a) V_{\pi}(s')$	$q(s,a) = r(s,a) + \gamma \sum_{s' \in S} P(s' s,a) V_{\pi}(s')$

Model-Based and Model-Free Setting

In a **model-based** setting, you have full access to the state transition P(s'|s, a) and reward function r(s, a)

Model = state transition + reward function

Game developer's view

In a **model-free** setting, you don't have access to P(s'|s,a) and r(s,a), but can interact with the environment in an episodic way

$$S \xrightarrow{a=\pi(s)}_{R} S' \xrightarrow{a'=\pi(s')}_{R'} S'' \xrightarrow{a''=\pi(s'')}_{R''} \dots$$

For most complex, realworld settings

Player's view

Option 1: Learn a model (reduce the problem to model-based learning) Estimate the state transition P(s'|s, a) and reward function r(s, a) of the given environment by episodic interaction.

Representative work: Dyna-Q More detailed introduction can be found in <u>https://snowkylin.github.io/blogs/introduction-to-model-based-rl.html</u>

A mathematician is pursuing a work as a firefighter.

"What do you do if you pass a Dumpster, and it's on fire?"

"Easy, I'd just put out the fire."

"Okay, what do you do if you pass a Dumpster, and it's not on fire?"

"Easy! I'd set it on fire!"

"Are you an idiot?!"

"No! I've just reduced the problem to one I've already solved!"

Option 2: Learn a policy without a model

Improve agent's policy π

- without explicit involvement of P(s'|s, a) (we don't know the exact probability)
- only involve r(s, a) in an episodic setting. I.e., the agent is at state s and actually performed action a

Is it possible? Let's review the policy iteration method

```
Randomly initialize \pi(s) and V_{\pi}(s)
```

While True:

While $|V_{\pi}(s) - (R + V_{\pi}(s'))| > \epsilon$:

 $V_{\pi}(s) \leftarrow R + V_{\pi}(s')$ for all $s \in S$

 $\pi'(s) \leftarrow \arg \max_{a} q_{\pi}(s, a)$ for all $s \in S$

if
$$\pi'(s) = \pi(s)$$
: break

 $\pi(s) \leftarrow \pi'(s)$

Policy evaluation: compute $V_{\pi}(s)$ for the current policy $\pi(s)$

Policy improvement: improve $\pi(s)$ by selecting the action *a* with maximal q(s, a) $R = r(s, \pi(s))$ is the immediate reward $s' = P(s, \pi(s))$ is the next state $q_{\pi}(s, a) = r(s, a) + V_{\pi}(P(s, a))$

Option 2: Learn a policy without a model

Can we solve the problem if we have a way to estimate $V_{\pi}(s)$ without a model? Better not. In policy improvement step, we need to compute

 $q_{\pi}(s,a) = r(s,a) + V_{\pi}(\boldsymbol{P(s,a)})$

Which require us to know the state transition function.

```
Randomly initialize \pi(s) and V_{\pi}(s)
While True:
```

Estimate $V_{\pi}(s)$ by episodic interaction with the environment using $\pi(s)$ $\pi'(s) \leftarrow \arg \max_{a} q_{\pi}(s, a)$ for all $s \in S$

if $\pi'(s) = \pi(s)$: break

 $\pi(s) \leftarrow \pi'(s)$

Policy evaluation: estimate $V_{\pi}(s)$ for the current policy $\pi(s)$

Policy improvement: improve $\pi(s)$ by selecting the action *a* with maximal q(s, a)

 $q_{\pi}(s,a) = r(s,a) + V_{\pi}(P(s,a))$

Option 2: Learn a policy without a model

```
How about estimate q_{\pi}(s, a) directly instead of V_{\pi}(s)?
```

It works!

```
Randomly initialize \pi(s) and V_{\pi}(s)
While True:
```

```
Estimate q_{\pi}(s, a) by episodic interaction
with the environment using \pi(s)
\pi'(s) \leftarrow \arg \max_{a} q_{\pi}(s, a) for all s \in S
```

if $\pi'(s) = \pi(s)$: break

 $\pi(s) \leftarrow \pi'(s)$

Policy evaluation: estimate $q_{\pi}(s, a)$ for the current policy $\pi(s)$

Policy improvement: improve $\pi(s)$ by selecting the action *a* with maximal q(s, a)

 $q_{\pi}(s,a) = r(s,a) + V_{\pi}(P(s,a))$

Policy Evaluation - Estimating $q_{\pi}(s, a)$ in an episodic setting

- $q_{\pi}(s, a)$ is the expectation of total rewards when starts from state s and performs action a.
- We can interact with the environment many times, to obtain lots of trajectories
- Then we do some simple statistics on the sampled trajectories:

 $q_{\pi}(s, a) \approx$ the average return of (partial) trajectories

starting from s with action a

• Monte Carlo approach

Policy Evaluation - Estimating $q_{\pi}(s, a)$ with Temporal Difference Approach

- We can do incremental update on $q_{\pi}(s, a)$, even if the episode does not finish
- Assume we have a partial trajectory ..., $s \xrightarrow[r]{a} s' \xrightarrow[r]{a'}, ...$
- We update $q_{\pi}(s, a)$ by

$$q_{\pi}(s,a) \leftarrow q_{\pi}(s,a) + \alpha \left(r + q_{\pi}(s',a') - q_{\pi}(s,a)\right)$$

$$A \text{ small "update rate", e.g., 0.01} New \text{ estimation based on the trajectory} Previous$$

Policy Improvement - Including Exploration in Agent's Policy

- We are estimating $Q_{\pi}(s, a)$ instead of precisely computing it, which means it can be inaccurate
- If we completely trust the estimated result to improve our policy, it may fall into suboptimality
 - Some (s, a) pair may never occur during the estimation
- We want to guarantee that every (*s*, *a*) has a positive probability during estimation.
- *ε*-greedy approach:
 - With probability 1- ε , choose the greedy action
 - With probability ε , choose an action at random

Right: 20% Reward = 0 50% Reward = 1 80% Reward = 5 50% Reward = 3 0

What if the first action is to choose the left door and observe reward=0?

SARSA Algorithm

Sarsa: An on-policy TD control algorithm

Q-Learning

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

 $\begin{array}{ll} \mbox{Algorithm parameters: step size $\alpha \in (0,1]$, small $\varepsilon > 0$\\ \mbox{Initialize $Q(s,a)$, for all $s \in S^+$, $a \in \mathcal{A}(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$\\ \mbox{Loop for each episode:} & & & \\ \mbox{Initialize S} & & & \\ \mbox{Loop for each step of episode:} & & & \\ \mbox{Choose A from S using policy derived from Q (e.g., ε-greedy)$\\ \mbox{Take action A, observe R, S'\\ \mbox{$Q(S,A) \leftarrow Q(S,A) + \alpha[R + \gamma \max_a Q(S',a) - Q(S,A)]$} \\ \mbox{$S \leftarrow S'$} & & \\ \mbox{Initial S is terminal} & & \\ \mbox{Similar to Value Iteration: not only estimate} q_{π} but also optimize q_{π} towards optimal q_{π^*} \\ \end{array}$

Off-policy: the policy that interacts with the environment and the policy in TD update can be different

Policy Gradient

- Assume the agent's policy $\pi(a|s)$ is parameterized by θ (denoted by π_{θ}) and differentiable
- Our target is to find an optimal policy π_{θ}^* that maximize the (expected) return $V_{\pi_{\theta}}(s)$
- Can we achieve this by gradient descend (ascend)?
- Let the objective be

$$J(\theta) = \mathbb{E}_{s_0}[V_{\pi_{\theta}}(s_0)]$$

in which s_0 is the initial state

• The gradient is

$$\frac{\partial}{\partial \theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} [q_{\pi_{\theta}}(s, a) \frac{\partial}{\partial \theta} \log \pi_{\theta}(a|s)]$$

Thank you!

Xihan Li Department of Computer Science, University College London <u>xihan.li@cs.ucl.ac.uk</u> <u>https://snowkylin.github.io</u>

Feb 2025