
COMP0124 MULTI-AGENT ARTIFICIAL INTELLIGENCE

Single-Agent Reinforcement
Learning

Xihan Li

Department of Computer Science,

University College London

xihan.li@cs.ucl.ac.uk

https://snowkylin.github.io

Feb 2025

mailto:xihan.li@cs.ucl.ac.uk
https://snowkylin.github.io/

Contents

1. Basic Game Theory and Nash Equilibrium

2. Potential Games and Best Respond Dynamics

3. Repeated Games and the Theory of Cooperation

4. Adversarial and Minimax Games

5. Bi-level Games and General-Sum Games and L-H Algorithms

6. Single-agent Reinforcement Learning and MDP

7. Learning Stochastic Games

8. Non-regret Learning and Correlated Equilibrium

9. Counterfactual Regret Minimisation

10.Learning with a Population of Agents

We are here

Outline

Dynamic Programming

• Policy Iteration

• Value Iteration

Temporal-Difference

Learning

• SARSA

• Q-Learning

• Policy Gradient• Markov Decision

Process (MDP)

• Bellman Equation

Value-based RL -

Model-based Learning

Value-based RL –

Model-Free Learning

Policy-based RLCornerstones

Reinforcement Learning (RL)

AlphaGo in playing Go

(MCTS+RL)

DeepSeek R1 in solving

math problems

(LLM+RL)

OpenAI's Dactyl in solving

Rubik's Cube with a robot hand

(Robotic+RL)

History of Reinforcement Learning

https://medium.com/@sanghaviharsh666/navigating-the-evolution-of-

reinforcement-learning-a-historical-perspective-6fbbaa010351

Markov Decision Process:
A Deterministic Example

trap

trap target

• A robot moves in a grid world

• The robot (called agent) can move across adjacent

cells in the grid.

• Target: find a “good” policy that enables it to reach

the target cell, when starting from any initial cell. The

agent should reach the target without

• entering any trap cells

• taking unnecessary detours

• colliding with the boundary of the grid

Zhao, Shiyu. Mathematical Foundations of Reinforcement Learning. Singapore: Springer Nature

Singapore, 2025. https://doi.org/10.1007/978-981-97-3944-8.

https://doi.org/10.1007/978-981-97-3944-8

Markov Decision Process:
State, Action and State Transition

𝑠1 𝑠2 𝑠3

𝑠4 𝑠5
𝑠6

(Trap)

𝑠7
(Trap)

𝑠8
𝑠9

(Target)

State

9 cells → 9 states

State space: all

states in the problem,

𝑆 = {𝑠1, … , 𝑠9}

Action

𝑎1

𝑎2

𝑎3

𝑎4 𝑎5

Move up, right, down, left

and stay still

Action space: all possible

actions in the problem,

𝐴 = {𝑎1, … , 𝑎5}

State Transition

Given a state 𝑠 and an action 𝑎, what will be the

next state 𝑃(𝑠, 𝑎)?

e.g., 𝑃 𝑠1, 𝑎1 = 𝑠2, 𝑃 𝑠5, 𝑎3 = 𝑠8

State \ Action 𝒂𝟏 (↑） 𝒂𝟐 (→) 𝒂𝟑 (↓) 𝒂𝟒 (←) 𝒂𝟓 (o)

𝑠1 𝑠1 𝑠2 𝑠4 𝑠1 𝑠1

𝑠2 … … … … …

𝑠3 … … … … …

𝑠4 … … … … …

𝑠5 … … … … …

𝑠6 … … … … …

𝑠7 … … … … …

𝑠8 … … … … …

𝑠9 𝑠6 𝑠9 𝑠9 𝑠8 𝑠9

Markov Decision Process:
Reward and Agent’s Policy

𝑠1 𝑠2 𝑠3

𝑠4 𝑠5
𝑠6

(Trap)

𝑠7
(Trap)

𝑠8
𝑠9

(Target)

Agent’s PolicyReward

Which actions to take at every state 𝑠.

E.g., the robot can take two different

policies 𝜋1(s) and 𝜋2(𝑠) are as follows

→ ↓ ←

→ ↓ ↓

→ → o

State 𝝅𝟏(𝐬) 𝝅𝟐(𝒔)

𝑠1 → ↓

𝑠2 ↓ ↓

𝑠3 ← ↓

𝑠4 → ↓

𝑠5 ↓ ↓

𝑠6 ↓ ↓

𝑠7 → →

𝑠8 → →

𝑠9 o o

𝜋1

↓ ↓ ↓

↓ ↓ ↓

→ → o

𝜋2

After executing an action 𝑎 at a state 𝑠, the

agent obtains a reward, denoted as 𝑟(𝑠, 𝑎),

as feedback from the environment.

State \ Action 𝒂𝟏 (↑）𝒂𝟐 (→) 𝒂𝟑 (↓) 𝒂𝟒 (←) 𝒂𝟓 (o)

𝑠1 -1 0 0 -1 0

𝑠2 -1 0 0 0 0

𝑠3 -1 -1 -1 0 0

𝑠4 0 0 -1 -1 0

𝑠5 0 -1 0 0 0

𝑠6 0 -1 +1 0 -1

𝑠7 0 0 -1 -1 -1

𝑠8 0 +1 -1 -1 0

𝑠9 -1 -1 -1 0 +1

• If the agent attempts to exit

the boundary, let r = −1.

• If the agent attempts to enter

a forbidden cell, let r = −1.

• If the agent reaches the

target state, let r = +1.

• Otherwise, the agent obtains

a reward of r = 0.

Markov Decision Process:
Trajectory and Return

Return (value) of a trajectoryTrajectory

Given an initial state 𝑠 and the agent’s policy 𝜋, the

return (value) 𝑉𝜋(𝑠) is the sum of all rewards on the

trajectory

E.g., for the two trajectories, their return is

𝑉𝜋1
𝑠1 = 0 + 0 + 0 + 1 = 1

𝑉𝜋2
𝑠1 = 0 − 1 + 0 + 1 = 0

We would like to find a policy for the agent that

maximize its return. Therefore, return can be used to

evaluate policies.

• For the example, 𝑉𝜋1
𝑠1 > 𝑉𝜋2

𝑠1 so policy 𝜋1 is

better than policy 𝜋2

→ ↓ ←

→ ↓ ↓

→ → o

𝜋1

↓ ↓ ↓

↓ ↓ ↓

→ → o

𝜋2

Given an initial state 𝑠𝑖𝑛𝑖𝑡 and the agent’s policy

𝜋, the agent can start from 𝑠𝑖𝑛𝑖𝑡 and recurrently

follow 𝜋 to take actions.

𝑠0 = 𝑠𝑖𝑛𝑖𝑡

For 𝑡 = 0,1, …
• take an action 𝑎𝑡 ← 𝜋(𝑠𝑡)
• obtain a reward 𝑅𝑡 ← 𝑟(𝑠𝑡 , 𝑎𝑡)
• transit to a new state 𝑠𝑡+1 ← 𝑃(𝑠𝑡 , 𝑎𝑡)

For example:

𝜋1, start from 𝑠1: 𝑠1 𝑟=0

𝑎2
 𝑠2 𝑟=0

𝑎3
𝑠5 𝑟=0

𝑎3
𝑠8 𝑟=1

𝑎2
𝑠9

𝜋2, start from 𝑠1: 𝑠1 𝑟=0

𝑎3
 𝑠2 𝑟=−1

𝑎3
𝑠5 𝑟=0

𝑎3
𝑠8 𝑟=1

𝑎2
𝑠9

Policy Evaluation and Bellman Equation

→ ↓ ←

→ ↓ ↓

→ → o

𝜋1

↓ ↓ ↓

↓ ↓ ↓

→ → o

𝜋2

Given the agent’s policy 𝜋, policy evaluation is

to compute 𝑉𝜋(𝑠) for all 𝑠 ∈ 𝑆

For a given 𝜋, this can be done by listing the

trajectory for each state and add up the rewards

State 𝐕𝝅𝟏
(𝐬) 𝐕𝝅𝟐

(𝐬)

𝑠1 1 0

𝑠2 1 1

𝑠3 1 0

𝑠4 1 0

𝑠5 1 1

𝑠6 1 1

𝑠7 1 1

𝑠8 1 1

𝑠9 0 0

However, we have a more general way to evaluate

the policy with Bellman equation.

Note that each return consists of an immediate

reward and future rewards.

𝑠
𝑅=𝑟(𝑠,𝑎)

𝑎=𝜋(𝑠)
𝑠′

𝑅′=𝑟 𝑠′,𝑎′

𝑎′=𝜋 𝑠′

𝑠″
𝑅″=𝑟(𝑠″,𝑎″)

𝑎″=𝜋(𝑠″)
…

• Immediate reward: the reward obtained after

taking an action a = 𝜋(𝑠). That is, 𝑟(𝑠, 𝜋(𝑠))
• Future rewards: the return of the trajectory

starting at the next state 𝑠′ = 𝑃 𝑠, 𝜋 𝑠

Therefore,

𝑉𝜋 𝑠 = 𝑟 𝑠, 𝜋 𝑠 + 𝑉𝜋 𝑠′

Which is the Bellman equation

𝑉𝜋(𝑠)

𝑟 𝑠, 𝜋 𝑠 𝑉𝜋(𝑠′)

Policy Evaluation with Bellman Equation
Given the Bellman equation

𝑉𝜋 𝑠 = 𝑟(𝑠, 𝜋(𝑠)) + 𝑉𝜋 𝑠′

We take 𝜋 shown on the left

as an example:

𝑉𝜋 𝑠1 = 0 + 𝑉𝜋 𝑠4

𝑉𝜋 𝑠2 = 0 + 𝑉𝜋 𝑠5

𝑉𝜋 𝑠3 = −1 + 𝑉𝜋 𝑠6

𝑉𝜋 𝑠4 = −1 + 𝑉𝜋 𝑠7

𝑉𝜋 𝑠5 = 0 + 𝑉𝜋 𝑠8

𝑉𝜋 𝑠6 = 1 + 𝑉𝜋 𝑠9

𝑉𝜋 𝑠7 = 0 + 𝑉𝜋 𝑠8

𝑉𝜋 𝑠8 = 1 + 𝑉𝜋 𝑠9

𝑉𝜋 𝑠9 = 0

↓ ↓ ↓

↓ ↓ ↓

→ → o

𝜋2 Let 𝑉𝜋 = 𝑉𝜋 𝑠1 , … , 𝑉𝜋 𝑠9
⊤
, we have the following matrix form

of the equations:

𝑉𝜋 = 𝐴𝑉𝜋 + 𝑏

In which 𝐴 =

0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0

and 𝑏 =

0
0

−1
−1
0
1
0
1
0

This is a type of fixed-point equation

𝑥 = 𝑓(𝑥) in which 𝑓 𝑥 = A𝑥 + b
that can be solved by fixed-point iteration as follows:

Randomly initialize 𝑥
while 𝑥 − 𝑓 𝑥 > 𝜖:

 𝑥 ← 𝑓(𝑥)

Its convergence can be proved with contraction mapping theorem

Immediate

reward

return starting

from next state

Policy Improvement

↓ ↓ ↓

↓ ↓ ↓

→ → o

𝜋

0 1 0

0 1 1

1 1 0

𝑉𝜋

→ ↓ ←

→ ↓ ↓

→ → o

𝜋′

Policy improvement: update 𝜋(𝑠) for a larger 𝑉𝜋(𝑠)
Recall the Bellman equation

𝑉𝜋 𝑠 = 𝑟 𝑠, 𝜋 𝑠 + 𝑉𝜋 𝑠′ = 𝑟 𝑠, 𝜋 𝑠 + 𝑉𝜋 𝑃(𝑠, 𝜋 𝑠)

How should we update 𝜋(𝑠) to enlarge 𝑉𝜋 𝑠 ?

𝜋(𝑠1) 𝑉𝜋 𝑠1 = 𝑟 𝑠1, 𝜋 𝑠1 + 𝑉𝜋 𝑃(𝑠1, 𝜋 𝑠1)

𝒂𝟏 (↑） 𝑟 𝑠1, 𝑎1 + 𝑉𝜋 𝑃(𝑠1, 𝑎1) = −1 + 𝑉𝜋 𝑠1 = −1

𝒂𝟐 (→） 𝑟 𝑠1, 𝑎2 + 𝑉𝜋 𝑃(𝑠1, 𝑎2) = 0 + 𝑉𝜋 𝑠2 = 𝟏

𝒂𝟑 (↓） 𝑟 𝑠1, 𝑎3 + 𝑉𝜋 𝑃(𝑠1, 𝑎3) = 0 + 𝑉𝜋 𝑠4 = 0

𝒂𝟒 (←） 𝑟 𝑠1, 𝑎4 + 𝑉𝜋 𝑃(𝑠1, 𝑎4) = −1 + 𝑉𝜋 𝑠1 = −1

𝒂𝟓 (o） 𝑟 𝑠1, 𝑎5 + 𝑉𝜋 𝑃(𝑠1, 𝑎5) = 0 + 𝑉𝜋 𝑠1 = 0

The

largest!

Let

𝑞𝜋 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝑉𝜋 𝑃(𝑠, 𝑎)
Then we update 𝜋(𝑠) by

𝜋′ 𝑠 = arg max
𝑎

𝑞𝜋(𝑠, 𝑎)

for each 𝑠 ∈ 𝑆

For the grid world example, we improve

• 𝜋′ 𝑠1 ← arg max
𝑎

𝑞𝜋 𝑠1, 𝑎 = 𝑎2

• 𝜋′ 𝑠3 ← arg max
𝑎

𝑞𝜋 𝑠3, 𝑎 = 𝑎4

• 𝜋′ 𝑠4 ← arg max
𝑎

𝑞𝜋 𝑠4, 𝑎 = 𝑎2

(marked in red)

The policy 𝜋 is optimal when we cannot do any

further improvement. I.e.,

𝜋 𝑠 = arg max
𝑎

𝑞𝜋(𝑠, 𝑎) for all 𝑠 ∈ 𝑆

Policy Iteration
We iteratively do policy evaluation and improvement,
until no further improvement can be done.

Randomly initialize 𝜋(𝑠) and 𝑉𝜋(𝑠)

While True:

 While |𝑉𝜋 𝑠 − 𝑅 + 𝑉𝜋 𝑠′ | > 𝜖:

 𝑉𝜋 𝑠 ← 𝑅 + 𝑉𝜋 𝑠′ for all 𝑠 ∈ 𝑆

 𝜋′ 𝑠 ← arg max
𝑎

𝑞𝜋(𝑠, 𝑎) for all 𝑠 ∈ 𝑆

 if 𝜋′ 𝑠 = 𝜋(𝑠): break

 𝜋 𝑠 ← 𝜋′(𝑠)

Policy evaluation: compute 𝑉𝜋(𝑠) for the

current policy 𝜋(𝑠) by fixed-point iteration

Policy improvement: improve 𝜋(𝑠) by

selecting the action 𝑎 with maximal 𝑞(𝑠, 𝑎)

𝑅 = 𝑟 𝑠, 𝜋 𝑠 is the immediate reward

𝑠′ = 𝑃(𝑠, 𝜋 𝑠) is the next state

𝑞𝜋 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝑉𝜋 𝑃(𝑠, 𝑎)

Value Iteration
Recall that the policy 𝜋 is optimal when we cannot do any further improvement. I.e.,

𝜋∗ 𝑠 = arg max
𝑎

𝑞(𝑠, 𝑎) for all 𝑠 ∈ 𝑆

So for an optimal policy 𝜋∗, its value function

𝑉𝜋∗ s = 𝑞𝜋∗(𝑠, 𝜋 𝑠)
will always equal to the maximal one among 𝑞(𝑠, 𝑎). I.e.,

𝑉𝜋∗ s = max
𝑎

 𝑞𝜋(𝑠, 𝑎)

𝑉𝜋∗ s = max
𝑎

𝑟(𝑠, 𝑎) + 𝑉𝜋∗ 𝑃(𝑠, 𝑎)

This is also a fixed-point equation that can be solved by fixed-point iteration.

Its convergence can be proved with contraction mapping theorem

Randomly initialize 𝑉𝜋(𝑠)

While |𝑉𝜋 𝑠 − max
𝑎

𝑟(𝑠, 𝑎) + 𝑉𝜋 𝑃(𝑠, 𝑎) | > 𝜖:

 𝑉𝜋 𝑠 ← max
𝑎

𝑟(𝑠, 𝑎) + 𝑉𝜋 𝑃(𝑠, 𝑎) for all 𝑠 ∈ 𝑆

𝜋 𝑠 ← arg max
𝑎

𝑞𝜋(𝑠, 𝑎) for all 𝑠 ∈ 𝑆

Value Iteration

Its convergence can be proved with contraction mapping theorem

Example:

𝑉𝜋∗ 𝑠 = max
𝑎∈{𝑎1,…,𝑎5}

𝑟(𝑠, 𝑎) + 𝑉𝜋∗ 𝑃(𝑠, 𝑎)

𝑉𝜋∗ 𝑠1 = max −1 + 𝑉𝜋∗ 𝑠1 , 0 + 𝑉𝜋∗ 𝑠2 , 0 + 𝑉𝜋∗ 𝑠4 , −1 + 𝑉𝜋∗ 𝑠1 , 0 + 𝑉𝜋∗ 𝑠1

𝑉𝜋∗ 𝑠2 = max −1 + 𝑉𝜋∗ 𝑠2 , 0 + 𝑉𝜋∗ 𝑠3 , 0 + 𝑉𝜋∗ 𝑠5 , 0 + 𝑉𝜋∗ 𝑠1 , 0 + 𝑉𝜋∗ 𝑠2

𝑉𝜋∗ 𝑠3 = max −1 + 𝑉𝜋∗ 𝑠3 , −1 + 𝑉𝜋∗ 𝑠3 , −1 + 𝑉𝜋∗ 𝑠6 , 0 + 𝑉𝜋∗ 𝑠2 , 0 + 𝑉𝜋∗ 𝑠3

𝑉𝜋∗ 𝑠4 = max 0 + 𝑉𝜋∗ 𝑠1 , 0 + 𝑉𝜋∗ 𝑠5 , −1 + 𝑉𝜋∗ 𝑠7 , −1 + 𝑉𝜋∗ 𝑠4 , 0 + 𝑉𝜋∗ 𝑠4

𝑉𝜋∗ 𝑠5 = max 0 + 𝑉𝜋∗ 𝑠2 , −1 + 𝑉𝜋∗ 𝑠6 , 0 + 𝑉𝜋∗ 𝑠8 , 0 + 𝑉𝜋∗ 𝑠4 , 0 + 𝑉𝜋∗ 𝑠5

𝑉𝜋∗ 𝑠6 = max 0 + 𝑉𝜋∗ 𝑠3 , −1 + 𝑉𝜋∗ 𝑠6 , +1 + 𝑉𝜋∗ 𝑠9 , 0 + 𝑉𝜋∗ 𝑠3 , −1 + 𝑉𝜋∗ 𝑠6

𝑉𝜋∗ 𝑠7 = max 0 + 𝑉𝜋∗ 𝑠4 , −1 + 𝑉𝜋∗ 𝑠8 , −1 + 𝑉𝜋∗ 𝑠7 , 0 + 𝑉𝜋∗ 𝑠7 , −1 + 𝑉𝜋∗ 𝑠7

𝑉𝜋∗ 𝑠8 = max 0 + 𝑉𝜋∗ 𝑠5 , +1 + 𝑉𝜋∗ 𝑠9 , −1 + 𝑉𝜋∗ 𝑠8 , −1 + 𝑉𝜋∗ 𝑠2 , 0 + 𝑉𝜋∗ 𝑠8

𝑉𝜋∗ 𝑠9 = 0

Let 𝑉𝜋∗ = 𝑉𝜋∗ 𝑠1 , … , 𝑉𝜋∗ 𝑠9
⊤
, we have

𝑉𝜋∗ = 𝑓(𝑉𝜋∗)
in which 𝑓 𝑉𝜋∗ = max(𝐴1𝑉𝜋∗ + 𝑏1, 𝐴2𝑉𝜋∗ + 𝑏2, 𝐴3𝑉𝜋∗ + 𝑏3, 𝐴4𝑉𝜋∗ + 𝑏4, 𝐴5𝑉𝜋∗ + 𝑏5)

𝑠1 𝑠2 𝑠3

𝑠4 𝑠5
𝑠6

(Trap)

𝑠7
(Trap)

𝑠8
𝑠9

(Target)

State \

Action
𝒂𝟏

(↑）
𝒂𝟐

(→)

𝒂𝟑

(↓)

𝒂𝟒

(←)

𝒂𝟓

(o)

𝑠1 -1 0 0 -1 0

𝑠2 -1 0 0 0 0

𝑠3 -1 -1 -1 0 0

𝑠4 0 0 -1 -1 0

𝑠5 0 -1 0 0 0

𝑠6 0 -1 +1 0 -1

𝑠7 0 0 -1 -1 -1

𝑠8 0 +1 -1 -1 0

𝑠9 -1 -1 -1 0 +1

Stochastic Cases

Deterministic Stochastic

State Transition 𝑃 𝑠, 𝑎 = 𝑠′
𝑃 𝑠′ 𝑠, 𝑎 is the conditional probability of transition

from (𝑠, 𝑎) to 𝑠′. σ𝑠′∈𝑆 𝑃 𝑠′ 𝑠, 𝑎 = 1

Agent’s Policy 𝜋 𝑠 = 𝑎
𝜋(𝑎|𝑠) is the conditional probability from 𝑠 to 𝑎,

σ𝑎∈𝐴 𝜋 𝑎 𝑠 = 1

Return (Value) 𝑉𝜋 𝑠 = 𝑅1 + 𝑅2 + ⋯
𝑉𝜋 𝑠 = 𝔼[𝑅1 + 𝑅2 + ⋯]

(the expectation of total rewards)

Bellman Equation
𝑉𝜋 𝑠 = 𝑟 𝑠, 𝜋 𝑠 + 𝑉𝜋 𝑠′

in which 𝑠′ = 𝑃(𝑠, 𝜋(𝑠))
𝑉𝜋 𝑠 =

𝑎∈𝐴

𝜋 𝑎 𝑠 [𝑟 𝑠, 𝑎 +

𝑠′∈𝑆

𝑃 𝑠′ 𝑠, 𝑎 𝑉𝜋 𝑠′]

Action-Value

Function

𝑞 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝑉𝜋 𝑃(𝑠, 𝑎)
𝑉𝜋 𝑠 = 𝑞(𝑠, 𝜋 𝑠)

𝑞 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 +

𝑠′∈𝑆

𝑃 𝑠′ 𝑠, 𝑎 𝑉𝜋 𝑠′

𝑉𝜋 𝑠 =

𝑎∈𝐴

𝜋 𝑎 𝑠 𝑞(𝑠, 𝑎)

Decay factor 𝜸

• Future rewards should be “less important”

• Sometimes critical for convergence

• 𝛾 is typically a number a bit less than 1 (e.g., 0.99)

Without decay factor With decay factor

Return (Value) 𝑉𝜋 𝑠 = 𝔼[𝑅1 + 𝑅2 + 𝑅3 + ⋯] 𝑉𝜋 𝑠 = 𝔼[𝑅1 + 𝜸𝑅2 + 𝜸𝟐𝑅3 + ⋯]

Bellman Equation 𝑉𝜋 𝑠 =

𝑎∈𝐴

𝜋 𝑎 𝑠 [𝑟 𝑠, 𝑎 +

𝑠′∈𝑆

𝑃 𝑠′ 𝑠, 𝑎 𝑉𝜋 𝑠′] 𝑉𝜋 𝑠 =

𝑎∈𝐴

𝜋 𝑎 𝑠 [𝑟 𝑠, 𝑎 + 𝜸

𝑠′∈𝑆

𝑃 𝑠′ 𝑠, 𝑎 𝑉𝜋 𝑠′]

Action-Value

Function
𝑞 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 +

𝑠′∈𝑆

𝑃 𝑠′ 𝑠, 𝑎 𝑉𝜋 𝑠′ 𝑞 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝜸

𝑠′∈𝑆

𝑃 𝑠′ 𝑠, 𝑎 𝑉𝜋 𝑠′

Model-Based and Model-Free Setting

In a model-based setting, you have full access
to the state transition 𝑃(𝑠′|𝑠, 𝑎) and reward
function 𝑟(𝑠, 𝑎)

Model = state transition + reward function

In a model-free setting, you don’t have access
to 𝑃(𝑠′|𝑠, 𝑎) and 𝑟(𝑠, 𝑎), but can interact with the
environment in an episodic way

𝑠
 𝑅

𝑎=𝜋(𝑠)
𝑠′

 𝑅′

𝑎′=𝜋 𝑠′

𝑠″
 𝑅″

𝑎″=𝜋(𝑠″)
…

Game developer’s view Player’s view

For most

complex, real-

world settings

Learning in Model-Free Setting

A mathematician is pursuing a work as a firefighter.

"What do you do if you pass a Dumpster, and it's on fire?"

"Easy, I'd just put out the fire."

"Okay, what do you do if you pass a Dumpster, and it's not on fire?"

"Easy! I'd set it on fire!"

“Are you an idiot?!”

"No! I've just reduced the problem to one I've already solved!"

https://snowkylin.github.io/blogs/introduction-to-model-based-rl.html

Option 1: Learn a model (reduce the problem to model-based learning)

Estimate the state transition 𝑃(𝑠′|𝑠, 𝑎) and reward function 𝑟(𝑠, 𝑎) of the given

environment by episodic interaction.

Representative work: Dyna-Q

More detailed introduction can be found in

https://snowkylin.github.io/blogs/introduction-to-model-based-rl.html

https://snowkylin.github.io/blogs/introduction-to-model-based-rl.html

Learning in Model-Free Setting
Option 2: Learn a policy without a model

Improve agent’s policy 𝜋

• without explicit involvement of 𝑃(𝑠′|𝑠, 𝑎) (we don’t know the exact probability)

• only involve 𝑟 𝑠, 𝑎 in an episodic setting. I.e., the agent is at state 𝑠 and actually performed action 𝑎

Is it possible? Let’s review the policy iteration method

Randomly initialize 𝜋(𝑠) and 𝑉𝜋(𝑠)

While True:

 While |𝑉𝜋 𝑠 − 𝑅 + 𝑉𝜋 𝑠′ | > 𝜖:

 𝑉𝜋 𝑠 ← 𝑅 + 𝑉𝜋 𝑠′ for all 𝑠 ∈ 𝑆

 𝜋′ 𝑠 ← arg max
𝑎

𝑞𝜋(𝑠, 𝑎) for all 𝑠 ∈ 𝑆

 if 𝜋′ 𝑠 = 𝜋(𝑠): break

 𝜋 𝑠 ← 𝜋′(𝑠)

Policy evaluation: compute 𝑉𝜋(𝑠) for the

current policy 𝜋(𝑠)

Policy improvement: improve 𝜋(𝑠) by

selecting the action 𝑎 with maximal 𝑞(𝑠, 𝑎)

𝑅 = 𝑟 𝑠, 𝜋 𝑠 is the immediate reward

𝑠′ = 𝑃(𝑠, 𝜋 𝑠) is the next state

𝑞𝜋 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝑉𝜋 𝑃(𝑠, 𝑎)

Learning in Model-Free Setting

Randomly initialize 𝜋(𝑠) and 𝑉𝜋(𝑠)

While True:

 Estimate 𝑉𝜋(𝑠) by episodic interaction

 with the environment using 𝜋(𝑠)

 𝜋′ 𝑠 ← arg max
𝑎

𝑞𝜋(𝑠, 𝑎) for all 𝑠 ∈ 𝑆

 if 𝜋′ 𝑠 = 𝜋(𝑠): break

 𝜋 𝑠 ← 𝜋′(𝑠)

Policy evaluation: estimate 𝑉𝜋(𝑠) for the

current policy 𝜋(𝑠)

Policy improvement: improve 𝜋(𝑠) by

selecting the action 𝑎 with maximal 𝑞(𝑠, 𝑎)

𝑞𝜋 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝑉𝜋 𝑃(𝑠, 𝑎)

Option 2: Learn a policy without a model

Can we solve the problem if we have a way to estimate 𝑉𝜋(𝑠) without a model? Better not.

In policy improvement step, we need to compute

𝑞𝜋 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝑉𝜋 𝑃(𝑠, 𝑎)
Which require us to know the state transition function.

Learning in Model-Free Setting

Randomly initialize 𝜋(𝑠) and 𝑉𝜋(𝑠)

While True:

 Estimate 𝑞𝜋 𝑠, 𝑎 by episodic interaction

 with the environment using 𝜋(𝑠)

 𝜋′ 𝑠 ← arg max
𝑎

𝑞𝜋(𝑠, 𝑎) for all 𝑠 ∈ 𝑆

 if 𝜋′ 𝑠 = 𝜋(𝑠): break

 𝜋 𝑠 ← 𝜋′(𝑠)

Policy evaluation: estimate 𝑞𝜋(𝑠, 𝑎) for

the current policy 𝜋(𝑠)

Policy improvement: improve 𝜋(𝑠) by

selecting the action 𝑎 with maximal 𝑞(𝑠, 𝑎)

𝑞𝜋 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝑉𝜋 𝑃(𝑠, 𝑎)

Option 2: Learn a policy without a model

How about estimate 𝑞𝜋(𝑠, 𝑎) directly instead of 𝑉𝜋(𝑠)?

It works!

Policy Evaluation - Estimating
𝒒𝝅(𝒔, 𝒂) in an episodic setting

• 𝑞𝜋 𝑠, 𝑎 is the expectation of total rewards when starts from state 𝑠 and performs
action 𝑎.

• We can interact with the environment many times, to obtain lots of trajectories

• Then we do some simple statistics on the sampled trajectories:

𝑞𝜋 𝑠, 𝑎 ≈ the average return of (partial) trajectories

starting from 𝑠 with action 𝑎

• Monte Carlo approach

Policy Evaluation - Estimating 𝒒𝝅(𝒔, 𝒂)
with Temporal Difference Approach

• We can do incremental update on 𝑞𝜋(𝑠, 𝑎), even if the episode does not finish

• Assume we have a partial trajectory … , 𝑠
 𝑟

𝑎
𝑠′

 𝑟′

𝑎′

,…

• We update 𝑞𝜋 𝑠, 𝑎 by

𝑞𝜋 𝑠, 𝑎 ← 𝑞𝜋 𝑠, 𝑎 + 𝛼 𝑟 + 𝑞𝜋 𝑠′, 𝑎′ − 𝑞𝜋 𝑠, 𝑎

New estimation

based on the

trajectory

Previous

estimation
A small

“update rate”,

e.g., 0.01

Policy Improvement - Including
Exploration in Agent’s Policy

• We are estimating 𝑄𝜋(𝑠, 𝑎) instead of precisely
computing it, which means it can be inaccurate

• If we completely trust the estimated result to improve
our policy, it may fall into suboptimality
• Some (𝑠, 𝑎) pair may never occur during the estimation

• We want to guarantee that every (𝑠, 𝑎) has a positive
probability during estimation.

• 𝜖-greedy approach:
• With probability 1-ɛ, choose the greedy action

• With probability ɛ, choose an action at random

Left:

20% Reward = 0

80% Reward = 5

Right:

50% Reward = 1

50% Reward = 3

What if the first action is to choose

the left door and observe reward=0?

SARSA Algorithm

Policy improvement

with exploration

Policy evaluation with

temporal difference

Q-Learning

Similar to Value Iteration: not only estimate

𝑞𝜋 but also optimize 𝑞𝜋 towards optimal 𝑞𝜋∗

Off-policy: the policy that interacts with the environment and the policy in TD update can be different

Policy Gradient

• Assume the agent’s policy 𝜋(𝑎|𝑠) is parameterized by 𝜃 (denoted by 𝜋𝜃)
and differentiable

• Our target is to find an optimal policy 𝜋𝜃
∗ that maximize the (expected)

return 𝑉𝜋𝜃
(𝑠)

• Can we achieve this by gradient descend (ascend)?

• Let the objective be
𝐽 𝜃 = 𝔼𝑠0

[𝑉𝜋𝜃
𝑠0]

in which 𝑠0 is the initial state

• The gradient is
𝜕

𝜕𝜃
𝐽 𝜃 = 𝔼𝜋𝜃

[𝑞𝜋𝜃
(𝑠, 𝑎)

𝜕

𝜕𝜃
log 𝜋𝜃(𝑎|𝑠)]

Thank you!

Xihan Li

Department of Computer Science,

University College London

xihan.li@cs.ucl.ac.uk

https://snowkylin.github.io

Feb 2025

mailto:xihan.li@cs.ucl.ac.uk
https://snowkylin.github.io/

	幻灯片 1: Single-Agent Reinforcement Learning
	幻灯片 2: Contents
	幻灯片 3: Outline
	幻灯片 4: Reinforcement Learning (RL)
	幻灯片 5: History of Reinforcement Learning
	幻灯片 6: Markov Decision Process: A Deterministic Example
	幻灯片 7: Markov Decision Process: State, Action and State Transition
	幻灯片 8: Markov Decision Process: Reward and Agent’s Policy
	幻灯片 9: Markov Decision Process: Trajectory and Return
	幻灯片 10: Policy Evaluation and Bellman Equation
	幻灯片 11: Policy Evaluation with Bellman Equation
	幻灯片 12: Policy Improvement
	幻灯片 13: Policy Iteration
	幻灯片 14: Value Iteration
	幻灯片 15: Value Iteration
	幻灯片 16: Stochastic Cases
	幻灯片 17: Decay factor 加粗斜体 gamma
	幻灯片 18: Model-Based and Model-Free Setting
	幻灯片 19: Learning in Model-Free Setting
	幻灯片 20: Learning in Model-Free Setting
	幻灯片 21: Learning in Model-Free Setting
	幻灯片 22: Learning in Model-Free Setting
	幻灯片 23: Policy Evaluation - Estimating 加粗斜体 q 下标 加粗斜体 pi 设备控制 4 左圆括号 加粗斜体 s ,加粗斜体 a. 右圆括号 in an episodic setting
	幻灯片 24: Policy Evaluation - Estimating 加粗斜体 q 下标 加粗斜体 pi 设备控制 4 左圆括号 加粗斜体 s ,加粗斜体 a. 右圆括号 with Temporal Difference Approach
	幻灯片 25: Policy Improvement - Including Exploration in Agent’s Policy
	幻灯片 26: SARSA Algorithm
	幻灯片 27: Q-Learning
	幻灯片 28: Policy Gradient
	幻灯片 29: Thank you!

