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• Computational model 
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• Recurrent Neural 

Networks (RNN) for 
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Cornerstones 
(that you must know)

Simple but useful
(Old-fashioned? Maybe not)

State of the art!
(super hot topic)

Before diving into the 

details…

?



Deep Neural Networks are 
everywhere

Text (audio)

（Dialogue generation 

via ChatGPT)

Image (video)

(Object Detection 

via YOLO)

Decision Making

(Playing Go via AlphaGo)



History of Deep Learning

Reference: 

https://link.springer.com/article/10.

1007/s11430-019-9584-9 

https://en.wikipedia.org/wiki/Histor

y_of_artificial_intelligence 

LLMs (GPT)

Diffusion Model

20222006

Hard to train

No computational 

resources

Small dataset

CV/Speech 

communities do 

not use NN 

anymore

Efficient training

GPU/multi-core CPU

Large dataset

The 

first 

wave

The 

second 

wave

The third 

wave

https://link.springer.com/article/10.1007/s11430-019-9584-9
https://link.springer.com/article/10.1007/s11430-019-9584-9
https://en.wikipedia.org/wiki/History_of_artificial_intelligence
https://en.wikipedia.org/wiki/History_of_artificial_intelligence


Cornerstones

• Computational model of a neuron

• Gradient Descent

• Multilayer Neural Networks and Backpropagation



Computational model of a neuron

Input signals: 𝑥 = 𝑥1, … , 𝑥𝑛

Output signal: 𝑦
Parameters of the neuron model:

𝑤 = (𝑤1, … , 𝑤𝑛) and 𝑏

Computational process:

𝑧 = 𝑤1𝑥1 + ⋯ + 𝑤𝑛𝑥𝑛 + 𝑏
𝑦 = 𝑓(𝑧)

Reference:

https://towardsdatascience.com/the-concept-of-

artificial-neurons-perceptrons-in-neural-networks-

fab22249cbfc

① Dendrites receive 

input signals from 

other neurons

② Nucleus process the input signals 

(different inputs have different 

importance) and produce an 

electrical output signal

③ Axon deliver 

the produced 

output signal to 

the synapses

①

②

③

④ Synapses pass the signal 

from an axon to dendrites of 

other neurons via chemical 

neurotransmitter

Perceptrons



Searching parameters

• Given a set of inputs with their corresponding “desired” outputs, finding the 
value of parameters 𝑤 and 𝑏, so that the behavior of the perceptron model 
is aligned with the given data.

𝒙𝟏 𝒙𝟐 𝒅

1 1 -1

1 2 -1

2 1 -1

2 2 1

𝑥1

𝑥2

𝑧 𝑓

𝑧 = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑏 

𝑓(𝑥) = ቊ
1, 𝑥 ≥ 0

−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑦 = 𝑓(𝑧)

𝑤1

𝑤2

𝑏

Finding parameters 𝑤1, 𝑤2, 𝑏 so that the 

above perceptron model behaves as in the 

left table

Desired behavior 

of the neuron

Solution: transforming it into 

an optimization problem

𝒙𝟏 𝒙𝟐 𝒅 Model output 𝒚

1 1 -1 𝑓(𝑤1 + 𝑤2 + 𝑏)

1 2 -1 𝑓(𝑤1 + 2𝑤2 + 𝑏)

2 1 -1 𝑓(2𝑤1 + 𝑤2 + 𝑏)

2 2 1 𝑓(2𝑤1 + 2𝑤2 + 𝑏)

Loss function 𝐿 = σ𝑖 𝑑𝑖 − 𝑦𝑖
2

We should find 𝑤1, 𝑤2, 𝑏 that 

minimize 𝐿 ! (ideally 0)



Optimization via gradient 
descent
Gradient descent is another optimization technique to maximize/minimize a given function, which 
run two steps iteratively: ① compute gradient ② update variables guided by gradient

Example: finding 𝑥 and 𝑦 that minimize 𝐿 = 𝑥2 + 𝑦2 + 2𝑥 − 2𝑦

Preparation: compute the gradient of 𝐿 w.r.t. 𝑥 and 𝑦

𝜕𝐿

𝜕𝑥
= 2𝑥 + 2 (regard 𝑦 as a constant), 

𝜕𝐿

𝜕𝑦
= 2𝑦 − 2 (regard 𝑥 as a constant)

Then initialize (𝑥, 𝑦) randomly, and do the following iteratively:

① compute 𝑔 =
𝜕𝐿

𝜕𝑥
 and ℎ =

𝜕𝐿

𝜕𝑦
 (here they are 𝑔 = 2𝑥 + 2 and ℎ = 2𝑦 − 2)

② update 𝑥, 𝑦 via 𝑥 ← 𝑥 − 𝛼𝑔 and 𝑦 ← 𝑦 − 𝛼ℎ (𝛼 is a small learning rate)

Until 𝑔 and ℎ are close to zero.

Gradient Descent Linear 

Programming

Objective Any differentiable 

function

Linear function

Constraint N/A Linear constraints

𝒙 𝒚
𝑔 =

𝜕𝐿

𝜕𝑥
ℎ =

𝜕𝐿

𝜕𝑦

𝑳

0 2 2 6 2 8

1 1.4 1.8 5.6 1.6 4.4

… … … … …

T -1 1 0 0 -2
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𝛼 = 0.1



Optimization via gradient 
descent

𝒙 𝒚
𝑔 =

𝜕𝐿

𝜕𝑥
ℎ =

𝜕𝐿

𝜕𝑦

𝑳

0 2 2 6 2 8

1 1.4 1.8 5.6 1.6 4.4

… … … … …

T -1 1 0 0 -2

L
is

 d
e

c
re

a
s
in

g
!

𝛼 = 0.1

𝐿 = 𝑥2 + 𝑦2 + 2𝑥 − 2𝑦

𝐿 = −1

𝐿 = 3

𝐿 = 7

𝑥

𝑦

(2,2)(1.4,1.8)

𝐿 = −2

(−1,1)

(−
𝜕𝐿

𝜕𝑥
, −

𝜕𝐿

𝜕𝑦
) points to the direction that 

leads to fastest descent



Multilayer Neural Networks

• Now we can find suitable parameters for a single neuron model, to mimic given expected 
behaviors.

• However, the capacity of a single neuron is very limited 
• (consider the XOR logic function, why a single neuron model cannot mimic it?)

• Solution: stack multiple neuron models horizontally and vertically!

𝑥1

𝑥2

…

𝑦1

𝑦2

𝑦3

A layer with 3 units

Multiple layers



Backpropagation

• Feedforward: 
• 𝑝 = 𝑓 𝑢1𝑥1 + 𝑢2𝑥2 , 𝑞 = 𝑓(𝑣1𝑥1 + 𝑣2𝑥2)
• 𝑦1 = 𝑓 𝑤1𝑝 + 𝑤2𝑞 , 𝑦2 = 𝑓(𝑟1𝑝 + 𝑟2𝑞)
• 𝐿1 = 𝑦1 − 𝑑1

2, 𝐿2 = 𝑦2 − 𝑑2
2

• 𝐿 = 𝐿1 + 𝐿2

• Backpropagation (finding the gradient of loss function 𝐿 w.r.t variables 𝑤, 𝑟, 𝑢, 𝑣)

•
𝜕𝐿

𝜕𝑦1
= 2 𝑦1 − 𝑑1 ,

𝜕𝐿

𝜕𝑦2
= 2 𝑦2 − 𝑑2

•
𝜕𝐿

𝜕𝑤1
=

𝜕𝐿1

𝜕𝑤1
+ 0 =

𝜕𝐿

𝜕𝑦1

𝜕𝑦

𝜕𝑤1
=

𝜕𝐿

𝜕𝑦1
𝑓′ 𝑤1𝑝 + 𝑤2𝑞 𝑝,

𝜕𝐿

𝜕𝑤2
=

𝜕𝐿

𝜕𝑦2

𝜕𝑦

𝜕𝑤2
=

𝜕𝐿

𝜕𝑦2
𝑓′ 𝑟1𝑝 + 𝑟2𝑞 𝑞 (similar for 

𝜕𝐿

𝜕𝑟1
 and 

𝜕𝐿

𝜕𝑟2
)

•
𝜕𝐿

𝜕𝑝
=

𝜕𝐿1

𝜕𝑝
+

𝜕𝐿2

𝜕𝑝
=

𝜕𝐿1

𝜕𝑦1

𝜕𝑦1

𝑝
+

𝜕𝐿2

𝜕𝑦2

𝜕𝑦2

𝑝
=

𝜕𝐿

𝜕𝑦1
𝑓′ 𝑤1𝑝 + 𝑤2𝑞 𝑤1+

𝜕𝐿

𝜕𝑦2
𝑓′ 𝑟1𝑝 + 𝑟2𝑞 𝑟1  (similar for 

𝜕𝐿

𝜕𝑞
)

•
𝜕𝐿

𝜕𝑢1
=

𝜕𝐿

𝜕𝑝

𝜕𝑝

𝜕𝑢1
=

𝜕𝐿

𝜕𝑝
 𝑓′ 𝑢1𝑥1 + 𝑢2𝑥2 𝑥1, 

𝜕𝐿

𝜕𝑢2
=

𝜕𝐿

𝜕𝑝

𝜕𝑝

𝜕𝑢2
=

𝜕𝐿

𝜕𝑝
 𝑓′ 𝑢1𝑥1 + 𝑢2𝑥2 𝑥2   (similar for 

𝜕𝐿

𝜕𝑣1
 and 

𝜕𝐿

𝜕𝑣2
)

𝑝

𝑞

𝑥1

𝑥2

𝑦1

𝑢1

𝑢2

𝑣2

𝑣1

𝑤1

𝑤2

𝑑1

inputs

Model

output

Expected

Output

(label)

𝑟1

𝑟2
𝑦2 𝑑2

𝐿 = 𝑓 𝑤1𝑝 + 𝑤2𝑞 − 𝑑1
2 + 𝑓(𝑟1𝑝 + 𝑟2𝑞) − 𝑑2

2

𝑦1 𝑦2

𝜕(𝑎+𝑏)

𝜕𝑥
=

𝜕𝑎

𝜕𝑥
+

𝜕𝑏

𝜕𝑥
𝜕𝑓(𝑦)

𝜕𝑥
=

𝜕𝑓(𝑦)

𝜕𝑦

𝜕𝑦

𝜕𝑥
 

𝜕𝑓(𝑎,𝑏)

𝜕𝑥
=

𝜕𝑓(𝑎,𝑏)

𝜕𝑎

𝜕𝑎

𝜕𝑥
+

𝜕𝑓(𝑎,𝑏)

𝜕𝑏

𝜕𝑏

𝜕𝑥

𝐿1 𝐿2

Here we omitted the bias term for 

simplicity



Feedforward network in matrix form

𝑝

𝑞

𝑥1

𝑥2

𝑦1

𝑢1

𝑢2

𝑣2

𝑣1

𝑤1

𝑤2

𝑑1inputs

Model

output

Expected

Output

(label)

𝑟1

𝑟2
𝑦2 𝑑2

Here we omitted the bias term for 

simplicity

𝑥 =
𝑥1

𝑥2

𝑉 =
𝑢1 𝑢2

𝑣1 𝑣2
𝑊 =

𝑤1 𝑤2

𝑟1 𝑟2

𝑧 =
𝑝

𝑞
= 𝑓(𝑉𝑥) 𝑦 =

𝑦1

𝑦2
= 𝑓(𝑊𝑧)

In such a way we can simply write the feedforward process as

𝑦 = 𝑓 𝑊𝑓 𝑉𝑥

with parameters 𝑊 and 𝑉

Training a feedforward neural network:

Given dataset (𝑋, 𝐷), initialize parameters 𝑊, 𝑉
While not converged:

  sample data 𝑥, 𝑑 from (𝑋, 𝐷)

  compute model output 𝑦 = 𝑓 𝑊𝑓 𝑉𝑥
compute loss function 𝐿 = 𝑦 − 𝑑 2

  compute gradients 
𝜕𝐿

𝜕𝑊
, 

𝜕𝐿

𝜕𝑉
via backpropagation

  update parameters via gradient descent 

    𝑊 ← 𝑊 − 𝛼
𝜕𝐿

𝜕𝑊
, 𝑉 ← 𝑉 − 𝛼

𝜕𝐿

𝜕𝑉



Basic Neural networks for image 
and text
• Convolutional Neural Networks (CNN) – spatial connection

• Recurrent Neural Networks (RNN) – temporal connection



Receptive field

• Different from the fully-connected case, neurons in the retina respond to 
light stimulus in restricted regions of the visual field

Reference: 

https://openbooks.lib.msu.edu/neuroscie

nce/chapter/vision-the-retina/



Convolutional layer (1D)

• To mimic the characteristic of 
retina neurons, we design a 
special way of connection that 
is
• Sparsely, local connected: each 

output only connects to its nearest 

𝑘 inputs 

• Shared weight: the weight is 

replicated across the entire visual 

field

• We named it as a “filter”

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑤1

𝑤2

𝑤3

𝑤1

𝑤1

𝑤2

𝑤2

𝑤3

𝑤3

𝑦1 = 𝑓(𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + 𝑏)

𝑦2 = 𝑓(𝑤1𝑥2 + 𝑤2𝑥3 + 𝑤3𝑥4 + 𝑏)

𝑦3 = 𝑓(𝑤1𝑥3 + 𝑤2𝑥4 + 𝑤3𝑥5 + 𝑏)

Number of parameters: 4 (𝑤1, 𝑤2, 𝑤3, 𝑏)
Not 12, as the weights are shared across 

the visual field

Size of the receptive field: 3

Each output connects to 3 inputs, not 5

Visual 

field



Convolutional layer (1D)

𝑞1

𝑞2

𝑞3

𝑞4

𝑞5

𝑦1

𝑦2

𝑦3

𝑤4

𝑤5

𝑤6

𝑦1 = 𝑓(𝑤1𝑝1 + 𝑤2𝑝2 + 𝑤3𝑝3 
+𝑤4𝑞1 + 𝑤5𝑞2 + 𝑤6𝑞3 + 𝑏)

𝑦2 = 𝑓(𝑤1𝑝2 + 𝑤2𝑝3 + 𝑤3𝑝4 
+𝑤4𝑞2 + 𝑤5𝑞3 + 𝑤6𝑞4 + 𝑏)

𝑦3 = 𝑓(𝑤1𝑝3 + 𝑤2𝑝4 + 𝑤3𝑝5 
+𝑤4𝑞3 + 𝑤5𝑞4 + 𝑤6𝑞5 + 𝑏)

Visual 

field

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5

Multiple 

channels

𝑤1

𝑤3

𝑤2

① One filter can process 

multiple channels of visual field

Number of parameters: 7 

(𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6, 𝑏)

Channel 1 Channel 2

② Multiple filters can work 

simultaneously on the same visual field

A convolutional layer usually consists of 

multiple filters

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑦1

𝑦2

𝑦3

𝑤1

𝑤2

𝑤3

𝑧1 = 𝑓(𝑣1𝑥1 + 𝑣2𝑥2 + 𝑣3𝑥3 + 𝑏)

𝑧2 = 𝑓(𝑤1𝑥2 + 𝑤2𝑥3 + 𝑤3𝑥4 + 𝑏)

z3 = 𝑓(𝑤1𝑥3 + 𝑤2𝑥4 + 𝑤3𝑥5 + 𝑏)

Visual 

field

𝑧1

𝑧2

𝑧3

𝑣1

𝑣2
𝑣3

Filter 1

Output:

𝑦 = (𝑦1, 𝑦2, 𝑦3)

Filter 2

Output:

𝑧 = (𝑧1, 𝑧2, 𝑧3)

Output: 2 channels, 

each channel 

consists of a visual 

field of length 3

Multiple 

filters



How to represent an image in a 
computer
One or more 2D arrays.

Value typically from 0 (darkest) – 255 (brightest) （or 0.0 – 1.0 as a float)

Colored image – three channels (red, green, blue)



Convolutional layer (2D)

• A direct extension of the previous 
discussed filter, from 1D to 2D visual fields.
• Input: from an 1D vector (size 5) to a 2D matrix 

(size 5 × 5)

• Output: from an 1D vector (size 3) to a 2D matrix 

(size 3 × 3)

• Receptive field: from an 1D sub-range (size 3) to 

a 2D sub-range (size 3 × 3)

• Other things are generally the same!



LeNet 5

Receptive Field: 5 × 5
Number of filters: 6

Number of parameters:

(5 × 5 × 1) × 6
With 2 paddings

Padding
The size of the visual 

field will “shrink” after 

convolution

To recover the size, we 

add padding at the 

border of the visual field. 

Pooling
A pooling layer slides a two-

dimensional filter over each 

channel of visual field, and 

summarizes the value lying 

within the region covered by 

the filter.

1 2 2 3

2 1 3 2

2 3 1 2

3 2 2 1

1.5 2.5

2.5 1.5

2 3

3 2

Average 

pooling

Max 

pooling

Visual field = feature map

Size of receptive field = kernel size

Receptive Field: 5 × 5
Number of filters: 16

Number of parameters:

(5 × 5 × 6) × 16
No padding

Reference: 

https://d2l.ai/chapter_convolutio

nal-neural-networks/lenet.html

Number of parameters excludes 

the bias term.

https://d2l.ai/chapter_convolutional-neural-networks/lenet.html
https://d2l.ai/chapter_convolutional-neural-networks/lenet.html


More about CNN

• Modern CNN (e.g., ResNet): https://d2l.ai/chapter_convolutional-
modern/index.html 

• Different types of convolution https://github.com/vdumoulin/conv_arithmetic 

https://d2l.ai/chapter_convolutional-modern/index.html
https://d2l.ai/chapter_convolutional-modern/index.html
https://github.com/vdumoulin/conv_arithmetic


Sequential Data with temporal 
connections

• Time-series data (stock price)

• Audio

• …

• And the most common one, 
text



Process sequential data with a 
recurrent neural network

• Assuming that the data is represented as 𝑥1, 𝑥2, … , 𝑥𝑇 (each 𝑥𝑡 is an 𝑛-dimensional 
vector)

• Initialize a state vector 𝑠 of length ℎ, and three parameters 𝑈, 𝑊, 𝑉 (in matrix form)

• For 𝑡 from 1 to 𝑇:
• Update state: 𝑠𝑡 ← 𝑓(𝑈𝑥𝑡 + 𝑊𝑠𝑡−1)
• Produce output: 𝑦𝑡 ← 𝑉𝑠𝑡

𝑈: an ℎ × 𝑛 matrix transforming input 𝑥𝑡

𝑊: an ℎ × ℎ matrix transforming 

previous input 𝑠𝑡−1

𝑉: an 𝑛 × ℎ matrix transforming current 

input 𝑠𝑡

So we have (2𝑛 + ℎ)ℎ parameters in an 

RNN (excluding bias)

Reference: 

https://dennybritz.com/posts/wildml/rec

urrent-neural-networks-tutorial-part-1/

𝑠0

𝑈

𝑊

𝑉

𝑈

𝑊

𝑉
𝑠1

𝑈

𝑊

𝑉
𝑠2

𝑈

𝑊

𝑉
𝑠3

𝑊
…

𝑦1 𝑦2 𝑦3 𝑦4

𝑥1 𝑥2 𝑥3 𝑥4



How to represent a word for neural 
models?

Neural models commonly use vectors to represent data

One-Hot Encoding

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

cat

dog

cow

sheep

Word Embedding

0.1 0.2cat

dog

cow

sheep

0.2 0.1

0.8 0.7

0.7 0.8

cat

dog

cow

sheep

“semantic space”: for words with 

similar semantic meaning, their 

corresponding vectorized 

representations will also be closer



Word Embedding

Reference：
https://writings.stephenwolfram.com/2023/02/what-is-chatgpt-doing-and-why-does-it-work/



RNN Example: next word prediction

• An apple a day keeps ___

• An apple a day keeps the ___

• An apple a day keeps the doctor ___

the

doctor

away

Input 𝑥1, 𝑥2, … , 𝑥𝑇 Expected label 𝑑𝑇

an apple a day

𝑠0

𝑈

𝑊

𝑉

apple

𝑈

𝑊

𝑉
𝑠1

a

𝑈

𝑊

𝑉
𝑠2

𝑈

𝑊

𝑉
𝑠3

day keeps

𝑊
…

Input:

Expected label:

𝑦1 𝑦2 𝑦3 𝑦4

𝑥1 𝑥2 𝑥3 𝑥4

𝑑1 𝑑2 𝑑3 𝑑4

Training a recurrent neural network:

Given dataset (𝑋, 𝐷), initialize parameters 𝑊, 𝑉
While not converged:

  sample data x1, 𝑥2, … , 𝑥𝑇 , 𝑑 from (𝑋, 𝐷)
  For 𝑡 from 1 to 𝑇:
    𝑠𝑡 = 𝑓(𝑈𝑥𝑡 + 𝑊𝑠𝑡−1), 𝑦𝑡 = 𝑉𝑠𝑡

compute loss function 𝐿 = σ𝑡 𝑦𝑡 − 𝑑𝑡
2

  compute gradients 
𝜕𝐿

𝜕𝑈
,

𝜕𝐿

𝜕𝑊
,

𝜕𝐿

𝜕𝑉
via backpropagation

  update parameters via gradient descent 

    𝑈 ← 𝑈 − 𝛼
𝜕𝐿

𝜕𝑈
, 𝑊 ← 𝑊 − 𝛼

𝜕𝐿

𝜕𝑊
, 𝑉 ← 𝑉 − 𝛼

𝜕𝐿

𝜕𝑉



More about RNN

• Backpropagation Through Time https://dennybritz.com/posts/wildml/recurrent-
neural-networks-tutorial-part-3/ 

• Vanishing Gradients and LSTM https://colah.github.io/posts/2015-08-
Understanding-LSTMs/ 

• Sequence-to-Sequence Model (Seq2Seq) 
https://www.tensorflow.org/text/tutorials/nmt_with_attention 

https://dennybritz.com/posts/wildml/recurrent-neural-networks-tutorial-part-3/
https://dennybritz.com/posts/wildml/recurrent-neural-networks-tutorial-part-3/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://www.tensorflow.org/text/tutorials/nmt_with_attention


State of the art techniques

• Transformer (the technique behind ChatGPT and Gemini)



Reference: 

https://arxiv.org/abs/

2304.13712



LLM as a next word predictor

Large language models (LLMs) 
perform incredibly good

What Is your name EOS

What Is your name EOS I

What Is your name EOS I am

What Is your name EOS I am GPT

What Is your name EOS I am GPT END

LLM
Predict the next word

LLM
Predict the next word

LLM
Predict the next word

LLM
Predict the next word

But their overall workflow 
(Transformer) is surprisingly simple

“just adding one word at a time”



Transformer at a glance

What Is Your Name EOS

0.1

0.2

0.2

0.1

0.8

0.7

0.7

0.8

0.9

0.9

Attention layer 1

……

Attention layer N

Fully 

connecte

d layer
I

input

Word 

embedding

Output

N 

attention 

layers

“Attention Is All You Need”

https://arxiv.org/abs/1706.0376



Attention mechanism

(-2,1) (-1,1) (0,1)

(0,0)

x

y

“attention 

direction”

(x,y)

1

0

0

0

1

0

0

0

1

apple

pear

banana

Attention step:

1. Compute the “matching degree” or “similarity” between 

the attention direction (query) and the direction of 

items (key) – here we simply use cos(𝜃)
2. Compute the weight sum of each item’s value, 

according to the “matching degree” computed above

Example: when the attention direction is pointed to the pear

(𝑥, 𝑦) = (−1,1)

“matching degree” with the apple =
−2,1 ×(−1,1)

(−2,1) (−1,1)
≈ 0.949

“matching degree” with the pear = 
−1,1 ×(−1,1)

(−1,1) (−1,1)
= 1

“matching degree” with the banana = 
0,1 ×(−1,1)

(0,1) (−1,1)
≈ 0.707

1

0

0

0

1

0

0

0

1

× 0.949 + × 1 + × 0.707 =

0.949

1

0.707

query

key

value



Attention mechanism

𝑞4

query

key

value

name

nameyourisWhat

𝑘1 𝑘2 𝑘3 𝑘4

Weighted sum of the values

For words, we do exactly the same:

1. Compute the “matching degree” or 

“similarity” between the attention 

direction (query) and the direction of 

items (key)

2. Compute the weight sum of each 

item’s value, according to the 

“matching degree” computed above

How to transform the word embedding of 

a word to the query, key and value vector? 

– This is what the model need to learn

𝑞 = 𝑊𝑞𝑒 + 𝑏𝑞

𝑘 = 𝑊𝑘𝑒 + 𝑏𝑘

𝑣 = 𝑊𝑣𝑒 + 𝑏𝑣

𝑒

Linear 

transformation

𝑣1 𝑣2 𝑣3 𝑣4



Attention mechanism

𝑞4query

key

value

name

nameyouriswhat

𝑘1 𝑘2 𝑘3 𝑘4

Weighted sum of the values

1. Transforming word embedding 

𝑒1, … , 𝑒𝑡 to query, key and value 

vectors

𝑞𝑖 = 𝑊𝑞𝑒𝑖 + 𝑏𝑞

𝑘𝑖 = 𝑊𝑘𝑒𝑖 + 𝑏𝑘

𝑣𝑖 = 𝑊𝑣𝑒𝑖 + 𝑏𝑣

𝑖 = 1, … , 𝑡
2. Compute “matching degree” 𝑠𝑖

between the current word’s query 

vector 𝑞𝑡 and previous words’ key 

vector 𝑘1 ⋯ 𝑘t, and normalize it with 

softmax function

𝑠𝑖 = sim (𝑞, 𝑘𝑖), 𝑖 = 1, … , 𝑡
𝑠1, … , 𝑠𝑡 ← Softmax(𝑠1, … , 𝑠𝑡)

Here the sim(⋅,⋅) function can be 

as simple as a dot product

3. Compute the weight sum of the value 

vectors, according to 𝑠𝑖

𝑒𝑡
′ = 𝑣1𝑠1 + ⋯ + 𝑣𝑡𝑠𝑡

𝑞4, 𝑘4, 𝑣4𝑞3, 𝑘3, 𝑣3𝑞2, 𝑘2, 𝑣2𝑞1, 𝑘1, 𝑣1

𝑒1 𝑒2 𝑒3 𝑒4

𝑣1 𝑣2 𝑣3 𝑣4

𝑒4
′

𝑠1 𝑠2 𝑠3
𝑠4



The advance of recent language models

Reference: https://cmte.ieee.org/futuredirections/2023/04/24/how-much-bigger-can-should-llms-become/

Emergent Abilities of Large Language Models https://arxiv.org/abs/2206.07682 

1. With the development of computational power, data, model and training technique, the trained 

language model becomes larger and larger – from “language model” to “large language model”

 We find that when the scale of the model exceeds certain “critical point”, new abilities emerge.

https://cmte.ieee.org/futuredirections/2023/04/24/how-much-bigger-can-should-llms-become/
https://arxiv.org/abs/2206.07682


Emergent abilities
Model Scale Emergent abilities

BERT/GPT （2018） 12-layer Transformer

7000 books (4.6GB)

117 million parameters

Pre-training

To accomplish certain tasks (e.g., translation), we just need 

to fine-tuning a pre-trained model, instead of training from 

scratch. 

GPT-2（2019） Same architecture

Extend training data to 

40GB (top articles in Reddit)

1.5 billion parameters

Multi-task

The trained model can achieve good results on multiple 

language tasks, without any fine-tuning or parameter update.

GPT-3（2020）
Codex（2021）
GPT-3.5（2022）

Training data extended to 

600GB

Parameters extended to 175 

billion

Including programming code 

in training data(Codex)

Instruction fine-tuning and 

RLHF (GPT-3.5)

In-Context Learning

The trained model can accomplish certain tasks via 

providing examples in natural language.

“Please output the number of legs: 1 chick = 2 legs, 2

chicken = 4 legs, 3 chicken =”

Chain of Thought

The trained model can output steps via adding “Let’s think 

step by step” in the prompt



The advance of recent language models

2. Techniques for aligning model output with people’s expectation

• Instruction fine-tuning

• Use supervised “instruction-answer” data pairs to fine-tuning the 

pre-trained model

• Data collection is expensive, performs poor on open questions 

(e.g., write a story about…) 

• Reinforcement Learning from Human Feedback, RLHF

• Train a “reward” model to score the model’s generated output

• Fine-tuning the pre-trained model via reinforcement learning, 

encouraging high-reward outputs and repress low-reward 

outputs.

Reference: https://openai.com/blog/chatgpt 

https://openai.com/blog/chatgpt


More about Transformer

• Natural Language Processing with Deep Learning CS224N/Ling284 
https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture11-
prompting-rlhf.pdf  

• Neural machine translation with a Transformer and Keras，
https://www.tensorflow.org/text/tutorials/transformer  

• The Illustrated GPT-2 http://jalammar.github.io/illustrated-gpt2/

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture11-prompting-rlhf.pdf
https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture11-prompting-rlhf.pdf
https://www.tensorflow.org/text/tutorials/transformer
http://jalammar.github.io/illustrated-gpt2/


Thank you!

Xihan Li

Department of Computer Science, 

University College London

xihan.li@cs.ucl.ac.uk

https://snowkylin.github.io

Feb 2024

mailto:xihan.li@cs.ucl.ac.uk
https://snowkylin.github.io/
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