

Learning and deep neural networks

Xihan Li Department of Computer Science, University College London <u>xihan.li@cs.ucl.ac.uk</u> <u>https://snowkylin.github.io</u>

Feb 2024

[≜]UCL

Contents

- Lecture 1: Multiagent AI and basic game theory
- Lecture 2: Repeated games
- Lecture 3: Potential games
- Lecture 4: Solving ("Learning") Nash Equilibria (1)
- Lecture 5: Solving ("Learning") Nash Equilibria (2)
- Lecture 6: Learning and deep neural networks
- Lecture 7: Single-agent Learning (1)
- Lecture 8: Multi-agent Learning (1)
- Lecture 9: Single-agent Learning (2)
- Lecture 10: Multi-agent Learning (2)

Outline

Before diving into the details	Cornerstones (that you must know)	Simple but useful (Old-fashioned? Maybe not)	State of the art! (super hot topic)
 Introduction History of Deep Learning 	 Computational model of a neuron Gradient Descent Multilayer Neural Networks and Backpropagation 	 Convolutional Neural Networks (CNN) for image Recurrent Neural Networks (RNN) for text 	 Transformer (the technique behind ChatGPT/Gemini)

Deep Neural Networks are everywhere

ChatGPT	Ľ	ChatGPT 3.5 ~ ±	*
DALLE			
Web Browser		Can you give me feedback on my short story?	
55 See all		ChatGPT Your writing is engaging and provides insight into the protagonist's feelings and past experiences. You effectively	
		use descriptive language to paint a picture of the setting and the characters. The dialogue between the protagonist	
		and their father feels natural and adds depth to the story. Additionally, your writing style is clear and easy to follow.	
		However, there are a few areas where you could improve:	
This is Description		1. Punctuation and grammar: There are some minor punctuation and grammar issues throughout the text that	
Inp to Bangkok		could be polished for a smoother reading experience.	
Leg day workout routine			
Website code snippet		2. Clarity: Some parts of the story could benefit from a bit more clarity or elaboration, especially in the transition	
Crateri crienter		between scenes and the protagonist's internal thoughts.	
Translate a sentence		3. Show, don't tell: While you do a good job of describing the physical setting, there are moments where you tell the	
Study college vocabulary		reader about the character's feelings and past experiences. Consider showing these emotions through actions,	
Rank the best dog breeds		dialogue, or internal monologue to make the narrative more immersive.	
Merch store database		Overall, your writing is well-crafted and engaging, with room for minor improvements in mechanics and clarity.	
Picking an outfit		Keep up the good work	
	-		
X* Refer a friend	NEW		
A 14+			
Age Personal account			

Text (audio) (Dialogue generation via ChatGPT) Image (video) (Object Detection via YOLO) Decision Making (Playing Go via AlphaGo)

History of Deep Learning

Cornerstones

- Computational model of a neuron
- Gradient Descent
- Multilayer Neural Networks and Backpropagation

Computational model of a neuron

Searching parameters

 Given a set of inputs with their corresponding "desired" outputs, finding the value of parameters w and b, so that the behavior of the perceptron model is aligned with the given data.

Desired behavior of the neuron

<i>x</i> ₁	<i>x</i> ₂	d
1	1	-1
1	2	-1
2	1	-1
2	2	1

Finding parameters w_1, w_2, b so that the above perceptron model behaves as in the left table

Solution: transforming it into an **optimization problem**

x_1	<i>x</i> ₂	d	Model output y
1	1	-1	$f(w_1 + w_2 + b)$
1	2	-1	$f(w_1 + 2w_2 + b)$
2	1	-1	$f(2w_1 + w_2 + b)$
2	2	1	$f(2w_1 + 2w_2 + b)$

Loss function $L = \sum_i (d_i - y_i)^2$ We should find w_1, w_2, b that minimize L ! (ideally 0)

 $\mathrm{d}y$

Optimization via gradient descent

Gradient descent is another optimization technique to maximize/minimize a given function. which run two steps iteratively: (1) compute gradient (2) update variables guided by gradient y = f(x)

Example: finding x and y that minimize
$$L = x^2 + y^2 + 2x - 2y$$

Preparation: compute the gradient of L w.r.t. x and y

$$\frac{\partial L}{\partial x} = 2x + 2$$
 (regard y as a constant), $\frac{\partial L}{\partial y} = 2y - 2$ (regard x as a constant)

Then initialize (x, y) randomly, and do the following iteratively:

(1) compute
$$g = \frac{\partial L}{\partial x}$$
 and $h = \frac{\partial L}{\partial y}$ (here they are $g = 2x + 2$ and $h = 2y - 2$)

(2) update x, y via $x \leftarrow x - \alpha g$ and $y \leftarrow y - \alpha h$ (α is a small learning rate) Until g and h are close to zero.

	Gradient Descent	Linear Programming
Objective	Any differentiable function	Linear function
Constraint	N/A	Linear constraints

 $\alpha = 0.1$

 y = f(x)	$\frac{d}{dx} = f'(x)$
k, any constant	0
x	1
x^2	2x
x^3	$3x^2$
x^n , any constant n	nx^{n-1}
e^x	e^x
e^{kx}	$k e^{kx}$
$\ln x = \log_{e} x$	$\frac{1}{x}$
$\sin x$	$\cos x$

Optimization via gradient descent

$$L = x^2 + y^2 + 2x - 2y$$

 $\left(-\frac{\partial L}{\partial x}, -\frac{\partial L}{\partial y}\right)$ points to the direction that leads to fastest descent

Multilayer Neural Networks

- Now we can find suitable parameters for a single neuron model, to mimic given expected behaviors.
- However, the capacity of a single neuron is very limited
 - (consider the XOR logic function, why a single neuron model cannot mimic it?)
- Solution: stack multiple neuron models horizontally and vertically!

Here we omitted the bias term for simplicity

$$\frac{\frac{\partial(a+b)}{\partial x} = \frac{\partial a}{\partial x} + \frac{\partial b}{\partial x}}{\frac{\partial f(y)}{\partial x} = \frac{\frac{\partial f(y)}{\partial y} \frac{\partial y}{\partial x}}{\frac{\partial f(a,b)}{\partial x} = \frac{\frac{\partial f(a,b)}{\partial a} \frac{\partial a}{\partial x} + \frac{\frac{\partial f(a,b)}{\partial b} \frac{\partial b}{\partial x}}{\frac{\partial b}{\partial x}}$$

• Feedforward:

•
$$p = f(u_1x_1 + u_2x_2), q = f(v_1x_1 + v_2x_2)$$

• $y_1 = f(w_1p + w_2q), y_2 = f(r_1p + r_2q)$
• $L_1 = (y_1 - d_1)^2, L_2 = (y_2 - d_2)^2$
• $L = L_1 + L_2$
 $L = (f(w_1p + w_2q) - d_1)^2 + (f(r_1p + r_2q) - d_2)^2$
 L_2

• Backpropagation (finding the gradient of loss function L w.r.t variables w, r, u, v)

$$\frac{\partial L}{\partial y_1} = 2(y_1 - d_1), \frac{\partial L}{\partial y_2} = 2(y_2 - d_2)$$

$$\frac{\partial L}{\partial w_1} = \frac{\partial L_1}{\partial w_1} + 0 = \frac{\partial L}{\partial y_1} \frac{\partial y}{\partial w_1} = \frac{\partial L}{\partial y_1} f'(w_1 p + w_2 q) p, \frac{\partial L}{\partial w_2} = \frac{\partial L}{\partial y_2} \frac{\partial y}{\partial w_2} = \frac{\partial L}{\partial y_2} f'(r_1 p + r_2 q) q \qquad \text{(similar for } \frac{\partial L}{\partial r_1} \text{ and } \frac{\partial L}{\partial r_2} \text{)}$$

$$\frac{\partial L}{\partial p} = \frac{\partial L_1}{\partial p} + \frac{\partial L_2}{\partial p} = \frac{\partial L_1}{\partial y_1} \frac{\partial y_1}{p} + \frac{\partial L_2}{\partial y_2} \frac{\partial y_2}{p} = \frac{\partial L}{\partial y_1} f'(w_1 p + w_2 q) w_1 + \frac{\partial L}{\partial y_2} f'(r_1 p + r_2 q) r_1 \qquad \text{(similar for } \frac{\partial L}{\partial q} \text{)}$$

$$\frac{\partial L}{\partial u_1} = \frac{\partial L}{\partial p} \frac{\partial p}{\partial u_1} = \frac{\partial L}{\partial p} f'(u_1 x_1 + u_2 x_2) x_1, \frac{\partial L}{\partial u_2} = \frac{\partial L}{\partial p} \frac{\partial p}{\partial u_2} = \frac{\partial L}{\partial p} f'(u_1 x_1 + u_2 x_2) x_2 \qquad \text{(similar for } \frac{\partial L}{\partial v_1} \text{ and } \frac{\partial L}{\partial v_2} \text{)}$$

Feedforward network in matrix form

Here we omitted the bias term for simplicity

Training a feedforward neural network:

compute model output y = f(Wf(Vx))

compute loss function $L = ||y - d||^2$

While not converged:

sample data x, d from (X, D)

Given dataset (X, D), initialize parameters W, V

 $= \begin{pmatrix} y_2 \end{pmatrix} = f(WZ)$ compute gradients $\frac{\partial L}{\partial W}$, $\frac{\partial L}{\partial V}$ via backpropagation update parameters via gradient descent $W \leftarrow W - \alpha \frac{\partial L}{\partial W}$, $V \leftarrow V - \alpha \frac{\partial L}{\partial V}$

In such a way we can simply write the feedforward process as

y = f(Wf(Vx))with parameters W and V

Basic Neural networks for image and text

- Convolutional Neural Networks (CNN) spatial connection
- Recurrent Neural Networks (RNN) temporal connection

Receptive field

• Different from the fully-connected case, neurons in the retina respond to light stimulus in **restricted regions** of the visual field

Reference: https://openbooks.lib.msu.edu/neuroscie nce/chapter/vision-the-retina/

Convolutional layer (1D)

- To mimic the characteristic of retina neurons, we design a special way of connection that is
 - Sparsely, local connected: each Visual output only connects to its nearest field k inputs
 - Shared weight: the weight is replicated across the entire visual field
- We named it as a "filter"

 x_1 W_1 $y_1 = f(w_1x_1 + w_2x_2 + w_3x_3 + b)$ W_2 x_2 W_3 Visual $y_2 = f(w_1x_2 + w_2x_3 + w_3x_4 + b)$ W_{2} *x*₃ W_2 $y_3 = f(w_1 x_3 + w_2 x_4 + w_3 x_5 + b)$ W_2 x_4 W_{γ} Number of parameters: 4 (w_1, w_2, w_3, b) x_5 Not 12, as the weights are shared across the visual field Size of the receptive field: 3

Each output connects to 3 inputs, not 5

② Multiple filters can work

simultaneously on the same visual field

Convolutional layer (1D)

A convolutional layer usually consists of (1) One filter can process multiple filters multiple channels of visual field Multiple filters q_1 p_1 x_1 W_4 $y_1 = f(w_1p_1 + w_2p_2 + w_3p_3)$ v_1 $+w_4q_1 + w_5q_2 + w_6q_3 + b$) $z_1 = f(v_1 x_1 + v_2 x_2 + v_3 x_3 + b)$ W_5 W_{2} q_2 p_2 x_2 y_1 WG W2 $y_2 = f(w_1p_2 + w_2p_3 + w_3p_4)$ Visual $+w_4q_2 + w_5q_3 + w_6q_4 + b$) Visual $z_2 = f(w_1x_2 + w_2x_3 + w_3x_4 + b)$ q_3 p_3 *y*₂ field *x*₃ y_2 Z_2 field $y_3 = f(w_1p_3 + w_2p_4 + w_3p_5)$ $+w_4q_3 + w_5q_4 + w_6q_5 + b$) $z_3 = f(w_1 x_3 + w_2 x_4 + w_3 x_5 + b)$ q_4 y_3 p_4 x_4 y_3 Z_3 Number of parameters: 7 Output: 2 channels, q_5 p_5 $(w_1, w_2, w_3, w_4, w_5, w_6, b)$ Filter 1 Filter 2 x_5 each channel Output: Output: consists of a visual $y = (y_1, y_2, y_3)$ $z = (z_1, z_2, z_3)$ Channel 2 Channel 1 Multiple field of length 3

channels

How to represent an image in a computer

One or more 2D arrays.

Value typically from 0 (darkest) – 255 (brightest) Colored image – three channels (red, green, blue)

157	153	174	168	150	152	129	151	172	161	155	156
155	182	165	74	75	62	88	17	110	210	180	154
180	180	-60	14	м	6	10	88	48	305	159	181
206	109	5	124	191	111	122	204	166	15	56	180
194		187	251	257	239	239	228	227	67	n	201
172	106	207	233	233	214	220	259	228	.95	74	206
188		179	209	185	215	211	158	1.99	75	20	169
189	37	165		10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	105	36	190
205	174	155	262	236	231	148	178	228	43	95	234
190	216	116	149	236	187	*	150	79	38	218	241
190	224	147	104	227	210	127	102	36	385	255	224
190	214	173	66	103	143	35	80	2	109	249	215
187	196	235	75	1		47	٥	6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	296
195	206	123	207	177	121	123	200	175	13	-	218

(or 0.0 – 1.0 as a float)

174 168 150 152 129 151 172

124 131 111 120

207 233 233 214 220 239

179 209 185 215 211

 165
 84
 10
 168
 134
 11

 191
 193
 158
 227
 178
 143

116 149 236

75

123 207 177

173 66

235

183 202 237 145

206

205 174 155 252 236 231 149 178

147 108 227 210

103 143

137 251 237 239 239 228 227

187 86

81

121 129 200

127 102

96 50

47

87 71

24

218 241

255 224

255 211

228

0 12 108 200 138 243 236

74

Red	Green	Blue	Hexadecimal code
0	0	0	#000000
255	255	255	#FFFFFF
255	0	0	#FF0000
0	255	0	#00FF00
0	0	255	#0000FF
255	128	0	#FF8000
255	255	0	#FFFF00
128	128	128	#808080

Convolutional layer (2D)

- A direct extension of the previous discussed filter, from 1D to 2D visual fields.
 - Input: from an 1D vector (size 5) to a 2D matrix (size 5 × 5)
 - Output: from an 1D vector (size 3) to a 2D matrix (size 3 × 3)
 - Receptive field: from an 1D sub-range (size 3) to a 2D sub-range (size 3 × 3)
- Other things are generally the same!

Convolved Feature

Â

Visual field = feature map Size of receptive field = kernel size

Padding

The size of the visual field will "shrink" after convolution To recover the size, we add padding at the border of the visual field.

Pooling

A pooling layer slides a twodimensional filter over each channel of visual field, and summarizes the value lying within the region covered by the filter.

1	2	2	3
2	1	3	2
2	3	1	2
3	2	2	1

	-		
1.5	2.5	2	3
2.5	1.5	3	2
Ave poo	rage ling	 M poo	ax ling

More about CNN

- Modern CNN (e.g., ResNet): <u>https://d2l.ai/chapter_convolutional-modern/index.html</u>
- Different types of convolution https://github.com/vdumoulin/conv_arithmetic

Sequential Data with temporal connections

- Time-series data (stock price)
- Audio
- ...
- And the most common one, text

months that it's that it's really started to effect this but I know what it is that's because . If you only want for the effect of being a clown. Yeah, I think you're

in Head and Shoulders it has the same effect as reversing it. I, I, a hairdresser told st hold of say, the rainbow Yeah. effect of a Wurli I mean, that's the beauty about ... 's what I mean. It may, if it's any effect at all it's very short lived I think. Mm Yes. Oh yes. Lot of repetition. In effect. What's an ongoing topic? Politic Il obviously, yeah. you know, for the effect and erm For the for the contrast, yeal inits finished in wooden set with marble effect roll topped work surface . Oh well that's y t sure with my blades up it'll have much effect but we can try. Yeah, it would look nic The trainer isn't. Just to get the full effect. Oh I was gonna turn this off Mm? tually interview if I do effect all the Well you're all o v them Without having a detrimental effect on the studying, you did what you could 'ell I would try and get something to that effect in writing. Yeah! Yeah. Where are the oth 'ough, don't you agree? Or words to that effect, right, and I realize that you have to think .. now that do have a, a, sort of a lasting effect. Yeah. I mean the majority of then , and on London prices especially. This effect has been compounded by the natural fact ig he also gave his blessing to I what in effect proved to be the case I declaring the Trar e wealthy which will have no significant effect on the economy and deepen the deficit. rights of audience are put into practical effect as soon as the necessary conditions hav :y review nowhere considers the overall effect of the individual changes proposed, or he from pure oxygen they found very little effect. Mike Roberts and colleagues at the ry lan Snodin and Stuart McCall, to such effect during the second half that Steve Coppell western with 'good demographics'. The effect is rather like an extended advertisement I looks even more refreshing, though its effect is that of a silver mallet. In the right place istorians have already raided it to good effect, notably Mark Girouard for his book on th between bidders can have the opposite effect. Another recent auction in Leeds saw a ru ing also creates an interesting highlight effect on the raised knitted details. The dye ten

Process sequential data with a recurrent neural network

- Assuming that the data is represented as $x_1, x_2, ..., x_T$ (each x_t is an *n*-dimensional vector)
- Initialize a state vector s of length h, and three parameters U, W, V (in matrix form)
- For *t* from 1 to *T*:
 - Update state: $s_t \leftarrow f(Ux_t + Ws_{t-1})$
 - Produce output: $y_t \leftarrow V s_t$

Reference: https://dennybritz.com/posts/wildml/rec urrent-neural-networks-tutorial-part-1/

U: an $h \times n$ matrix transforming input x_t W: an $h \times h$ matrix transforming previous input s_{t-1} V: an $n \times h$ matrix transforming current input s_t So we have (2n + h)h parameters in an RNN (excluding bias)

How to represent a word for neural models?

Neural models commonly use **vectors** to represent data

"semantic space": for words with similar semantic meaning, their corresponding vectorized representations will also be closer

Word Embedding

■ noun ■ verb ■ adjective ■ adverb ■ pronoun

Reference:

https://writings.stephenwolfram.com/2023/02/what-is-chatgpt-doing-and-why-does-it-work/

RNN Example: next word prediction

Input x_1, x_2, \dots, x_T

- An apple a day keeps _____
- An apple a day keeps the _____
- An apple a day keeps the doctor _____ $d_1 \quad d_2 \quad d_3 \quad d_4$ Expected label: apple a day keeps

Expected label d_T

the

doctor

away

Training a recurrent neural network:

Given dataset (X,D), initialize parameters W,VWhile not converged: sample data $x_1, x_2, ..., x_T, d$ from (X,D)For t from 1 to T: $s_t = f(Ux_t + Ws_{t-1}), y_t = Vs_t$ compute loss function $L = \sum_t ||y_t - d_t||^2$ compute gradients $\frac{\partial L}{\partial u}, \frac{\partial L}{\partial w}, \frac{\partial L}{\partial v}$ via backpropagation update parameters via gradient descent $U \leftarrow U - \alpha \frac{\partial L}{\partial u}, W \leftarrow W - \alpha \frac{\partial L}{\partial w}, V \leftarrow V - \alpha \frac{\partial L}{\partial v}$

More about RNN

- Backpropagation Through Time https://dennybritz.com/posts/wildml/recurrent-neural-networks-tutorial-part-3/
- Vanishing Gradients and LSTM <u>https://colah.github.io/posts/2015-08-</u> <u>Understanding-LSTMs/</u>
- Sequence-to-Sequence Model (Seq2Seq) <u>https://www.tensorflow.org/text/tutorials/nmt_with_attention</u>

State of the art techniques

• Transformer (the technique behind ChatGPT and Gemini)

12:00	■ \$ III.
G Is piano or guitar easier to learn and much practice does each need?	lhow 🌷
🖾 Images 🖪 News 🧷 Shop	pping 🕨 Vide
Some say the piano is easier to lea finger and hand movements are n and learning and memorizing note easier.	arn, as the hore natural, es can be
Others say that it's easier to learn the guitar and you could pick up a pattern in a couple of hours.	chords on strumming
Music teachers often recommend beginners practice for at least 1 hr To get to an intermediate level, it t takes 3-6 months of regular pract guitar, and 6-18 months for piano.	that our per day. ypically ice for
Read more	凸 孕
	Q Quora Which is mon playing piano playing guitar
What's Easier to Learn Piano or Guitar? It's much easier to learn a song for the guitar than to learn it for	I started playin instruments th now, after almo continue to de proficient e

G Search 🦊 🗙
< GIF 🂠 🍇 📴
Cur
CIF ✿ 월 달 ···· qwertyuio asdfghjkl
cur therefore therefore therefore q w e r t y u i a s d f g h j k l
c ur t t t u u q w e r t y u i o a s d f g h j k l the z x c v b n m c
< cir q w e r t y u i o a s d f g h j k l Q z x c v b n m 123 0 ⊕

LLM as a next word predictor

Large language models (LLMs) perform incredibly good

But their overall workflow (Transformer) is surprisingly simple **"just adding one word at a time"**

Transformer at a glance

"Attention Is All You Need"

Attention Is All You Need

Ashish Vaswani* Noam Shazeer* Niki Parmar* Jakob Uszkoreit* Google Brain Google Brain Google Research Google Research avaswani@google.com noam@google.com nikip@google.com usz@google.com Llion Jones* Aidan N. Gomez* † Łukasz Kaiser* Google Research University of Toronto Google Brain aidan@cs.toronto.edu llion@google.com lukaszkaiser@google.com

Illia Polosukhin^{*‡} illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.

https://arxiv.org/abs/1706.0376

Attention mechanism

Attention step:

- 1. Compute the "matching degree" or "similarity" between the attention direction (query) and the direction of items (key) – here we simply use $cos(\theta)$
- 2. Compute the weight sum of each item's value, according to the "matching degree" computed above

Attention mechanism

For words, we do exactly the same:

- Compute the "matching degree" or "similarity" between the attention direction (query) and the direction of items (key)
- Compute the weight sum of each item's value, according to the "matching degree" computed above

How to transform the word embedding of a word to the query, key and value vector? – This is what the model need to learn

≜UCL

Attention mechanism

1. Transforming word embedding e_1, \ldots, e_t to query, key and value vectors

 $q_i = W_q e_i + b_q$ $k_i = W_k e_i + b_k$ $v_i = W_v e_i + b_v$ $i = 1, \dots, t$

2. Compute "matching degree" s_i between the current word's query vector q_t and previous words' key vector $k_1 \cdots k_t$, and normalize it with softmax function

> $s_i = \text{sim} (q, k_i), i = 1, \dots, t$ $s_1, \dots, s_t \leftarrow \text{Softmax}(s_1, \dots, s_t)$

Here the $sim(\cdot, \cdot)$ function can be as simple as a dot product

3. Compute the weight sum of the value vectors, according to s_i

 $e_t' = v_1 s_1 + \dots + v_t s_t$

The advance of recent language models

 With the development of computational power, data, model and training technique, the trained language model becomes larger and larger – from "language model" to "large language model" We find that when the scale of the model exceeds certain "critical point", new abilities emerge.

Reference: <u>https://cmte.ieee.org/futuredirections/2023/04/24/how-much-bigger-can-should-llms-become/</u> Emergent Abilities of Large Language Models <u>https://arxiv.org/abs/2206.07682</u>

Emergent abilities

Model	Scale	Emergent abilities
BERT/GPT (2018)	12-layer Transformer 7000 books (4.6GB) 117 million parameters	Pre-training To accomplish certain tasks (e.g., translation), we just need to fine-tuning a pre-trained model, instead of training from scratch.
GPT-2 (2019)	Same architecture Extend training data to 40GB (top articles in Reddit) 1.5 billion parameters	Multi-task The trained model can achieve good results on multiple language tasks, without any fine-tuning or parameter update.
GPT-3 (2020) Codex (2021) GPT-3.5 (2022)	Training data extended to 600GB Parameters extended to 175 billion Including programming code in training data(Codex) Instruction fine-tuning and RLHF (GPT-3.5)	 In-Context Learning The trained model can accomplish certain tasks via providing examples in natural language. "Please output the number of legs: 1 chick = 2 legs, 2 chicken = 4 legs, 3 chicken =" Chain of Thought The trained model can output steps via adding "Let's think step by step" in the prompt

 \bigcirc

Explain reinforcement

learning to a 6 year old.

(В

Explain rewards

D We give treats and

The advance of recent language models

- 2. Techniques for aligning model output with people's expectation
- Instruction fine-tuning
 - Use supervised "instruction-answer" data pairs to fine-tuning the pre-trained model
 - Data collection is expensive, performs poor on open questions (e.g., write a story about...)
- Reinforcement Learning from Human Feedback, RLHF
 - Train a "reward" model to score the model's generated output
 - Fine-tuning the pre-trained model via reinforcement learning, encouraging high-reward outputs and repress low-reward outputs.

A labeler ranks the outputs from best to worst.

A prompt and

several model

outputs are

This data is used to train our reward model.

More about Transformer

- Natural Language Processing with Deep Learning CS224N/Ling284 <u>https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture11-prompting-rlhf.pdf</u>
- Neural machine translation with a Transformer and Keras, <u>https://www.tensorflow.org/text/tutorials/transformer</u>
- The Illustrated GPT-2 http://jalammar.github.io/illustrated-gpt2/

Thank you!

Xihan Li Department of Computer Science, University College London <u>xihan.li@cs.ucl.ac.uk</u> <u>https://snowkylin.github.io</u>

Feb 2024