
COMP0124 MULTI-AGENT ARTIFICIAL INTELLIGENCE

Learning and deep neural networks

Xihan Li

Department of Computer Science,

University College London

xihan.li@cs.ucl.ac.uk

https://snowkylin.github.io

Feb 2024

mailto:xihan.li@cs.ucl.ac.uk
https://snowkylin.github.io/

Contents

• Lecture 1: Multiagent AI and basic game theory

• Lecture 2: Repeated games

• Lecture 3: Potential games

• Lecture 4: Solving (“Learning”) Nash Equilibria (1)

• Lecture 5: Solving (“Learning”) Nash Equilibria (2)

• Lecture 6: Learning and deep neural networks

• Lecture 7: Single-agent Learning (1)

• Lecture 8: Multi-agent Learning (1)

• Lecture 9: Single-agent Learning (2)

• Lecture 10: Multi-agent Learning (2)

We are here

Outline

• Computational model

of a neuron

• Gradient Descent

• Multilayer Neural

Networks and

Backpropagation

• Convolutional Neural

Networks (CNN) for

image

• Recurrent Neural

Networks (RNN) for

text

• Transformer

(the technique behind

ChatGPT/Gemini)

• Introduction

• History of Deep

Learning

Cornerstones
(that you must know)

Simple but useful
(Old-fashioned? Maybe not)

State of the art!
(super hot topic)

Before diving into the

details…

?

Deep Neural Networks are
everywhere

Text (audio)

（Dialogue generation

via ChatGPT)

Image (video)

(Object Detection

via YOLO)

Decision Making

(Playing Go via AlphaGo)

History of Deep Learning

Reference:

https://link.springer.com/article/10.

1007/s11430-019-9584-9

https://en.wikipedia.org/wiki/Histor

y_of_artificial_intelligence

LLMs (GPT)

Diffusion Model

20222006

Hard to train

No computational

resources

Small dataset

CV/Speech

communities do

not use NN

anymore

Efficient training

GPU/multi-core CPU

Large dataset

The

first

wave

The

second

wave

The third

wave

https://link.springer.com/article/10.1007/s11430-019-9584-9
https://link.springer.com/article/10.1007/s11430-019-9584-9
https://en.wikipedia.org/wiki/History_of_artificial_intelligence
https://en.wikipedia.org/wiki/History_of_artificial_intelligence

Cornerstones

• Computational model of a neuron

• Gradient Descent

• Multilayer Neural Networks and Backpropagation

Computational model of a neuron

Input signals: 𝑥 = 𝑥1, … , 𝑥𝑛

Output signal: 𝑦
Parameters of the neuron model:

𝑤 = (𝑤1, … , 𝑤𝑛) and 𝑏

Computational process:

𝑧 = 𝑤1𝑥1 + ⋯ + 𝑤𝑛𝑥𝑛 + 𝑏
𝑦 = 𝑓(𝑧)

Reference:

https://towardsdatascience.com/the-concept-of-

artificial-neurons-perceptrons-in-neural-networks-

fab22249cbfc

① Dendrites receive

input signals from

other neurons

② Nucleus process the input signals

(different inputs have different

importance) and produce an

electrical output signal

③ Axon deliver

the produced

output signal to

the synapses

①

②

③

④ Synapses pass the signal

from an axon to dendrites of

other neurons via chemical

neurotransmitter

Perceptrons

Searching parameters

• Given a set of inputs with their corresponding “desired” outputs, finding the
value of parameters 𝑤 and 𝑏, so that the behavior of the perceptron model
is aligned with the given data.

𝒙𝟏 𝒙𝟐 𝒅

1 1 -1

1 2 -1

2 1 -1

2 2 1

𝑥1

𝑥2

𝑧 𝑓

𝑧 = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑏

𝑓(𝑥) = ቊ
1, 𝑥 ≥ 0

−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑦 = 𝑓(𝑧)

𝑤1

𝑤2

𝑏

Finding parameters 𝑤1, 𝑤2, 𝑏 so that the

above perceptron model behaves as in the

left table

Desired behavior

of the neuron

Solution: transforming it into

an optimization problem

𝒙𝟏 𝒙𝟐 𝒅 Model output 𝒚

1 1 -1 𝑓(𝑤1 + 𝑤2 + 𝑏)

1 2 -1 𝑓(𝑤1 + 2𝑤2 + 𝑏)

2 1 -1 𝑓(2𝑤1 + 𝑤2 + 𝑏)

2 2 1 𝑓(2𝑤1 + 2𝑤2 + 𝑏)

Loss function 𝐿 = σ𝑖 𝑑𝑖 − 𝑦𝑖
2

We should find 𝑤1, 𝑤2, 𝑏 that

minimize 𝐿 ! (ideally 0)

Optimization via gradient
descent
Gradient descent is another optimization technique to maximize/minimize a given function, which
run two steps iteratively: ① compute gradient ② update variables guided by gradient

Example: finding 𝑥 and 𝑦 that minimize 𝐿 = 𝑥2 + 𝑦2 + 2𝑥 − 2𝑦

Preparation: compute the gradient of 𝐿 w.r.t. 𝑥 and 𝑦

𝜕𝐿

𝜕𝑥
= 2𝑥 + 2 (regard 𝑦 as a constant),

𝜕𝐿

𝜕𝑦
= 2𝑦 − 2 (regard 𝑥 as a constant)

Then initialize (𝑥, 𝑦) randomly, and do the following iteratively:

① compute 𝑔 =
𝜕𝐿

𝜕𝑥
 and ℎ =

𝜕𝐿

𝜕𝑦
 (here they are 𝑔 = 2𝑥 + 2 and ℎ = 2𝑦 − 2)

② update 𝑥, 𝑦 via 𝑥 ← 𝑥 − 𝛼𝑔 and 𝑦 ← 𝑦 − 𝛼ℎ (𝛼 is a small learning rate)

Until 𝑔 and ℎ are close to zero.

Gradient Descent Linear

Programming

Objective Any differentiable

function

Linear function

Constraint N/A Linear constraints

𝒙 𝒚
𝑔 =

𝜕𝐿

𝜕𝑥
ℎ =

𝜕𝐿

𝜕𝑦

𝑳

0 2 2 6 2 8

1 1.4 1.8 5.6 1.6 4.4

… … … … …

T -1 1 0 0 -2

L
is

 d
e

c
re

a
s
in

g
!

𝛼 = 0.1

Optimization via gradient
descent

𝒙 𝒚
𝑔 =

𝜕𝐿

𝜕𝑥
ℎ =

𝜕𝐿

𝜕𝑦

𝑳

0 2 2 6 2 8

1 1.4 1.8 5.6 1.6 4.4

… … … … …

T -1 1 0 0 -2

L
is

 d
e

c
re

a
s
in

g
!

𝛼 = 0.1

𝐿 = 𝑥2 + 𝑦2 + 2𝑥 − 2𝑦

𝐿 = −1

𝐿 = 3

𝐿 = 7

𝑥

𝑦

(2,2)(1.4,1.8)

𝐿 = −2

(−1,1)

(−
𝜕𝐿

𝜕𝑥
, −

𝜕𝐿

𝜕𝑦
) points to the direction that

leads to fastest descent

Multilayer Neural Networks

• Now we can find suitable parameters for a single neuron model, to mimic given expected
behaviors.

• However, the capacity of a single neuron is very limited
• (consider the XOR logic function, why a single neuron model cannot mimic it?)

• Solution: stack multiple neuron models horizontally and vertically!

𝑥1

𝑥2

…

𝑦1

𝑦2

𝑦3

A layer with 3 units

Multiple layers

Backpropagation

• Feedforward:
• 𝑝 = 𝑓 𝑢1𝑥1 + 𝑢2𝑥2 , 𝑞 = 𝑓(𝑣1𝑥1 + 𝑣2𝑥2)
• 𝑦1 = 𝑓 𝑤1𝑝 + 𝑤2𝑞 , 𝑦2 = 𝑓(𝑟1𝑝 + 𝑟2𝑞)
• 𝐿1 = 𝑦1 − 𝑑1

2, 𝐿2 = 𝑦2 − 𝑑2
2

• 𝐿 = 𝐿1 + 𝐿2

• Backpropagation (finding the gradient of loss function 𝐿 w.r.t variables 𝑤, 𝑟, 𝑢, 𝑣)

•
𝜕𝐿

𝜕𝑦1
= 2 𝑦1 − 𝑑1 ,

𝜕𝐿

𝜕𝑦2
= 2 𝑦2 − 𝑑2

•
𝜕𝐿

𝜕𝑤1
=

𝜕𝐿1

𝜕𝑤1
+ 0 =

𝜕𝐿

𝜕𝑦1

𝜕𝑦

𝜕𝑤1
=

𝜕𝐿

𝜕𝑦1
𝑓′ 𝑤1𝑝 + 𝑤2𝑞 𝑝,

𝜕𝐿

𝜕𝑤2
=

𝜕𝐿

𝜕𝑦2

𝜕𝑦

𝜕𝑤2
=

𝜕𝐿

𝜕𝑦2
𝑓′ 𝑟1𝑝 + 𝑟2𝑞 𝑞 (similar for

𝜕𝐿

𝜕𝑟1
 and

𝜕𝐿

𝜕𝑟2
)

•
𝜕𝐿

𝜕𝑝
=

𝜕𝐿1

𝜕𝑝
+

𝜕𝐿2

𝜕𝑝
=

𝜕𝐿1

𝜕𝑦1

𝜕𝑦1

𝑝
+

𝜕𝐿2

𝜕𝑦2

𝜕𝑦2

𝑝
=

𝜕𝐿

𝜕𝑦1
𝑓′ 𝑤1𝑝 + 𝑤2𝑞 𝑤1+

𝜕𝐿

𝜕𝑦2
𝑓′ 𝑟1𝑝 + 𝑟2𝑞 𝑟1 (similar for

𝜕𝐿

𝜕𝑞
)

•
𝜕𝐿

𝜕𝑢1
=

𝜕𝐿

𝜕𝑝

𝜕𝑝

𝜕𝑢1
=

𝜕𝐿

𝜕𝑝
 𝑓′ 𝑢1𝑥1 + 𝑢2𝑥2 𝑥1,

𝜕𝐿

𝜕𝑢2
=

𝜕𝐿

𝜕𝑝

𝜕𝑝

𝜕𝑢2
=

𝜕𝐿

𝜕𝑝
 𝑓′ 𝑢1𝑥1 + 𝑢2𝑥2 𝑥2 (similar for

𝜕𝐿

𝜕𝑣1
 and

𝜕𝐿

𝜕𝑣2
)

𝑝

𝑞

𝑥1

𝑥2

𝑦1

𝑢1

𝑢2

𝑣2

𝑣1

𝑤1

𝑤2

𝑑1

inputs

Model

output

Expected

Output

(label)

𝑟1

𝑟2
𝑦2 𝑑2

𝐿 = 𝑓 𝑤1𝑝 + 𝑤2𝑞 − 𝑑1
2 + 𝑓(𝑟1𝑝 + 𝑟2𝑞) − 𝑑2

2

𝑦1 𝑦2

𝜕(𝑎+𝑏)

𝜕𝑥
=

𝜕𝑎

𝜕𝑥
+

𝜕𝑏

𝜕𝑥
𝜕𝑓(𝑦)

𝜕𝑥
=

𝜕𝑓(𝑦)

𝜕𝑦

𝜕𝑦

𝜕𝑥

𝜕𝑓(𝑎,𝑏)

𝜕𝑥
=

𝜕𝑓(𝑎,𝑏)

𝜕𝑎

𝜕𝑎

𝜕𝑥
+

𝜕𝑓(𝑎,𝑏)

𝜕𝑏

𝜕𝑏

𝜕𝑥

𝐿1 𝐿2

Here we omitted the bias term for

simplicity

Feedforward network in matrix form

𝑝

𝑞

𝑥1

𝑥2

𝑦1

𝑢1

𝑢2

𝑣2

𝑣1

𝑤1

𝑤2

𝑑1inputs

Model

output

Expected

Output

(label)

𝑟1

𝑟2
𝑦2 𝑑2

Here we omitted the bias term for

simplicity

𝑥 =
𝑥1

𝑥2

𝑉 =
𝑢1 𝑢2

𝑣1 𝑣2
𝑊 =

𝑤1 𝑤2

𝑟1 𝑟2

𝑧 =
𝑝

𝑞
= 𝑓(𝑉𝑥) 𝑦 =

𝑦1

𝑦2
= 𝑓(𝑊𝑧)

In such a way we can simply write the feedforward process as

𝑦 = 𝑓 𝑊𝑓 𝑉𝑥

with parameters 𝑊 and 𝑉

Training a feedforward neural network:

Given dataset (𝑋, 𝐷), initialize parameters 𝑊, 𝑉
While not converged:

 sample data 𝑥, 𝑑 from (𝑋, 𝐷)

 compute model output 𝑦 = 𝑓 𝑊𝑓 𝑉𝑥
compute loss function 𝐿 = 𝑦 − 𝑑 2

 compute gradients
𝜕𝐿

𝜕𝑊
,

𝜕𝐿

𝜕𝑉
via backpropagation

 update parameters via gradient descent

 𝑊 ← 𝑊 − 𝛼
𝜕𝐿

𝜕𝑊
, 𝑉 ← 𝑉 − 𝛼

𝜕𝐿

𝜕𝑉

Basic Neural networks for image
and text
• Convolutional Neural Networks (CNN) – spatial connection

• Recurrent Neural Networks (RNN) – temporal connection

Receptive field

• Different from the fully-connected case, neurons in the retina respond to
light stimulus in restricted regions of the visual field

Reference:

https://openbooks.lib.msu.edu/neuroscie

nce/chapter/vision-the-retina/

Convolutional layer (1D)

• To mimic the characteristic of
retina neurons, we design a
special way of connection that
is
• Sparsely, local connected: each

output only connects to its nearest

𝑘 inputs

• Shared weight: the weight is

replicated across the entire visual

field

• We named it as a “filter”

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑤1

𝑤2

𝑤3

𝑤1

𝑤1

𝑤2

𝑤2

𝑤3

𝑤3

𝑦1 = 𝑓(𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + 𝑏)

𝑦2 = 𝑓(𝑤1𝑥2 + 𝑤2𝑥3 + 𝑤3𝑥4 + 𝑏)

𝑦3 = 𝑓(𝑤1𝑥3 + 𝑤2𝑥4 + 𝑤3𝑥5 + 𝑏)

Number of parameters: 4 (𝑤1, 𝑤2, 𝑤3, 𝑏)
Not 12, as the weights are shared across

the visual field

Size of the receptive field: 3

Each output connects to 3 inputs, not 5

Visual

field

Convolutional layer (1D)

𝑞1

𝑞2

𝑞3

𝑞4

𝑞5

𝑦1

𝑦2

𝑦3

𝑤4

𝑤5

𝑤6

𝑦1 = 𝑓(𝑤1𝑝1 + 𝑤2𝑝2 + 𝑤3𝑝3
+𝑤4𝑞1 + 𝑤5𝑞2 + 𝑤6𝑞3 + 𝑏)

𝑦2 = 𝑓(𝑤1𝑝2 + 𝑤2𝑝3 + 𝑤3𝑝4
+𝑤4𝑞2 + 𝑤5𝑞3 + 𝑤6𝑞4 + 𝑏)

𝑦3 = 𝑓(𝑤1𝑝3 + 𝑤2𝑝4 + 𝑤3𝑝5
+𝑤4𝑞3 + 𝑤5𝑞4 + 𝑤6𝑞5 + 𝑏)

Visual

field

𝑝1

𝑝2

𝑝3

𝑝4

𝑝5

Multiple

channels

𝑤1

𝑤3

𝑤2

① One filter can process

multiple channels of visual field

Number of parameters: 7

(𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6, 𝑏)

Channel 1 Channel 2

② Multiple filters can work

simultaneously on the same visual field

A convolutional layer usually consists of

multiple filters

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑦1

𝑦2

𝑦3

𝑤1

𝑤2

𝑤3

𝑧1 = 𝑓(𝑣1𝑥1 + 𝑣2𝑥2 + 𝑣3𝑥3 + 𝑏)

𝑧2 = 𝑓(𝑤1𝑥2 + 𝑤2𝑥3 + 𝑤3𝑥4 + 𝑏)

z3 = 𝑓(𝑤1𝑥3 + 𝑤2𝑥4 + 𝑤3𝑥5 + 𝑏)

Visual

field

𝑧1

𝑧2

𝑧3

𝑣1

𝑣2
𝑣3

Filter 1

Output:

𝑦 = (𝑦1, 𝑦2, 𝑦3)

Filter 2

Output:

𝑧 = (𝑧1, 𝑧2, 𝑧3)

Output: 2 channels,

each channel

consists of a visual

field of length 3

Multiple

filters

How to represent an image in a
computer
One or more 2D arrays.

Value typically from 0 (darkest) – 255 (brightest) （or 0.0 – 1.0 as a float)

Colored image – three channels (red, green, blue)

Convolutional layer (2D)

• A direct extension of the previous
discussed filter, from 1D to 2D visual fields.
• Input: from an 1D vector (size 5) to a 2D matrix

(size 5 × 5)

• Output: from an 1D vector (size 3) to a 2D matrix

(size 3 × 3)

• Receptive field: from an 1D sub-range (size 3) to

a 2D sub-range (size 3 × 3)

• Other things are generally the same!

LeNet 5

Receptive Field: 5 × 5
Number of filters: 6

Number of parameters:

(5 × 5 × 1) × 6
With 2 paddings

Padding
The size of the visual

field will “shrink” after

convolution

To recover the size, we

add padding at the

border of the visual field.

Pooling
A pooling layer slides a two-

dimensional filter over each

channel of visual field, and

summarizes the value lying

within the region covered by

the filter.

1 2 2 3

2 1 3 2

2 3 1 2

3 2 2 1

1.5 2.5

2.5 1.5

2 3

3 2

Average

pooling

Max

pooling

Visual field = feature map

Size of receptive field = kernel size

Receptive Field: 5 × 5
Number of filters: 16

Number of parameters:

(5 × 5 × 6) × 16
No padding

Reference:

https://d2l.ai/chapter_convolutio

nal-neural-networks/lenet.html

Number of parameters excludes

the bias term.

https://d2l.ai/chapter_convolutional-neural-networks/lenet.html
https://d2l.ai/chapter_convolutional-neural-networks/lenet.html

More about CNN

• Modern CNN (e.g., ResNet): https://d2l.ai/chapter_convolutional-
modern/index.html

• Different types of convolution https://github.com/vdumoulin/conv_arithmetic

https://d2l.ai/chapter_convolutional-modern/index.html
https://d2l.ai/chapter_convolutional-modern/index.html
https://github.com/vdumoulin/conv_arithmetic

Sequential Data with temporal
connections

• Time-series data (stock price)

• Audio

• …

• And the most common one,
text

Process sequential data with a
recurrent neural network

• Assuming that the data is represented as 𝑥1, 𝑥2, … , 𝑥𝑇 (each 𝑥𝑡 is an 𝑛-dimensional
vector)

• Initialize a state vector 𝑠 of length ℎ, and three parameters 𝑈, 𝑊, 𝑉 (in matrix form)

• For 𝑡 from 1 to 𝑇:
• Update state: 𝑠𝑡 ← 𝑓(𝑈𝑥𝑡 + 𝑊𝑠𝑡−1)
• Produce output: 𝑦𝑡 ← 𝑉𝑠𝑡

𝑈: an ℎ × 𝑛 matrix transforming input 𝑥𝑡

𝑊: an ℎ × ℎ matrix transforming

previous input 𝑠𝑡−1

𝑉: an 𝑛 × ℎ matrix transforming current

input 𝑠𝑡

So we have (2𝑛 + ℎ)ℎ parameters in an

RNN (excluding bias)

Reference:

https://dennybritz.com/posts/wildml/rec

urrent-neural-networks-tutorial-part-1/

𝑠0

𝑈

𝑊

𝑉

𝑈

𝑊

𝑉
𝑠1

𝑈

𝑊

𝑉
𝑠2

𝑈

𝑊

𝑉
𝑠3

𝑊
…

𝑦1 𝑦2 𝑦3 𝑦4

𝑥1 𝑥2 𝑥3 𝑥4

How to represent a word for neural
models?

Neural models commonly use vectors to represent data

One-Hot Encoding

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

cat

dog

cow

sheep

Word Embedding

0.1 0.2cat

dog

cow

sheep

0.2 0.1

0.8 0.7

0.7 0.8

cat

dog

cow

sheep

“semantic space”: for words with

similar semantic meaning, their

corresponding vectorized

representations will also be closer

Word Embedding

Reference：
https://writings.stephenwolfram.com/2023/02/what-is-chatgpt-doing-and-why-does-it-work/

RNN Example: next word prediction

• An apple a day keeps ___

• An apple a day keeps the ___

• An apple a day keeps the doctor ___

the

doctor

away

Input 𝑥1, 𝑥2, … , 𝑥𝑇 Expected label 𝑑𝑇

an apple a day

𝑠0

𝑈

𝑊

𝑉

apple

𝑈

𝑊

𝑉
𝑠1

a

𝑈

𝑊

𝑉
𝑠2

𝑈

𝑊

𝑉
𝑠3

day keeps

𝑊
…

Input:

Expected label:

𝑦1 𝑦2 𝑦3 𝑦4

𝑥1 𝑥2 𝑥3 𝑥4

𝑑1 𝑑2 𝑑3 𝑑4

Training a recurrent neural network:

Given dataset (𝑋, 𝐷), initialize parameters 𝑊, 𝑉
While not converged:

 sample data x1, 𝑥2, … , 𝑥𝑇 , 𝑑 from (𝑋, 𝐷)
 For 𝑡 from 1 to 𝑇:
 𝑠𝑡 = 𝑓(𝑈𝑥𝑡 + 𝑊𝑠𝑡−1), 𝑦𝑡 = 𝑉𝑠𝑡

compute loss function 𝐿 = σ𝑡 𝑦𝑡 − 𝑑𝑡
2

 compute gradients
𝜕𝐿

𝜕𝑈
,

𝜕𝐿

𝜕𝑊
,

𝜕𝐿

𝜕𝑉
via backpropagation

 update parameters via gradient descent

 𝑈 ← 𝑈 − 𝛼
𝜕𝐿

𝜕𝑈
, 𝑊 ← 𝑊 − 𝛼

𝜕𝐿

𝜕𝑊
, 𝑉 ← 𝑉 − 𝛼

𝜕𝐿

𝜕𝑉

More about RNN

• Backpropagation Through Time https://dennybritz.com/posts/wildml/recurrent-
neural-networks-tutorial-part-3/

• Vanishing Gradients and LSTM https://colah.github.io/posts/2015-08-
Understanding-LSTMs/

• Sequence-to-Sequence Model (Seq2Seq)
https://www.tensorflow.org/text/tutorials/nmt_with_attention

https://dennybritz.com/posts/wildml/recurrent-neural-networks-tutorial-part-3/
https://dennybritz.com/posts/wildml/recurrent-neural-networks-tutorial-part-3/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://www.tensorflow.org/text/tutorials/nmt_with_attention

State of the art techniques

• Transformer (the technique behind ChatGPT and Gemini)

Reference:

https://arxiv.org/abs/

2304.13712

LLM as a next word predictor

Large language models (LLMs)
perform incredibly good

What Is your name EOS

What Is your name EOS I

What Is your name EOS I am

What Is your name EOS I am GPT

What Is your name EOS I am GPT END

LLM
Predict the next word

LLM
Predict the next word

LLM
Predict the next word

LLM
Predict the next word

But their overall workflow
(Transformer) is surprisingly simple

“just adding one word at a time”

Transformer at a glance

What Is Your Name EOS

0.1

0.2

0.2

0.1

0.8

0.7

0.7

0.8

0.9

0.9

Attention layer 1

……

Attention layer N

Fully

connecte

d layer
I

input

Word

embedding

Output

N

attention

layers

“Attention Is All You Need”

https://arxiv.org/abs/1706.0376

Attention mechanism

(-2,1) (-1,1) (0,1)

(0,0)

x

y

“attention

direction”

(x,y)

1

0

0

0

1

0

0

0

1

apple

pear

banana

Attention step:

1. Compute the “matching degree” or “similarity” between

the attention direction (query) and the direction of

items (key) – here we simply use cos(𝜃)
2. Compute the weight sum of each item’s value,

according to the “matching degree” computed above

Example: when the attention direction is pointed to the pear

(𝑥, 𝑦) = (−1,1)

“matching degree” with the apple =
−2,1 ×(−1,1)

(−2,1) (−1,1)
≈ 0.949

“matching degree” with the pear =
−1,1 ×(−1,1)

(−1,1) (−1,1)
= 1

“matching degree” with the banana =
0,1 ×(−1,1)

(0,1) (−1,1)
≈ 0.707

1

0

0

0

1

0

0

0

1

× 0.949 + × 1 + × 0.707 =

0.949

1

0.707

query

key

value

Attention mechanism

𝑞4

query

key

value

name

nameyourisWhat

𝑘1 𝑘2 𝑘3 𝑘4

Weighted sum of the values

For words, we do exactly the same:

1. Compute the “matching degree” or

“similarity” between the attention

direction (query) and the direction of

items (key)

2. Compute the weight sum of each

item’s value, according to the

“matching degree” computed above

How to transform the word embedding of

a word to the query, key and value vector?

– This is what the model need to learn

𝑞 = 𝑊𝑞𝑒 + 𝑏𝑞

𝑘 = 𝑊𝑘𝑒 + 𝑏𝑘

𝑣 = 𝑊𝑣𝑒 + 𝑏𝑣

𝑒

Linear

transformation

𝑣1 𝑣2 𝑣3 𝑣4

Attention mechanism

𝑞4query

key

value

name

nameyouriswhat

𝑘1 𝑘2 𝑘3 𝑘4

Weighted sum of the values

1. Transforming word embedding

𝑒1, … , 𝑒𝑡 to query, key and value

vectors

𝑞𝑖 = 𝑊𝑞𝑒𝑖 + 𝑏𝑞

𝑘𝑖 = 𝑊𝑘𝑒𝑖 + 𝑏𝑘

𝑣𝑖 = 𝑊𝑣𝑒𝑖 + 𝑏𝑣

𝑖 = 1, … , 𝑡
2. Compute “matching degree” 𝑠𝑖

between the current word’s query

vector 𝑞𝑡 and previous words’ key

vector 𝑘1 ⋯ 𝑘t, and normalize it with

softmax function

𝑠𝑖 = sim (𝑞, 𝑘𝑖), 𝑖 = 1, … , 𝑡
𝑠1, … , 𝑠𝑡 ← Softmax(𝑠1, … , 𝑠𝑡)

Here the sim(⋅,⋅) function can be

as simple as a dot product

3. Compute the weight sum of the value

vectors, according to 𝑠𝑖

𝑒𝑡
′ = 𝑣1𝑠1 + ⋯ + 𝑣𝑡𝑠𝑡

𝑞4, 𝑘4, 𝑣4𝑞3, 𝑘3, 𝑣3𝑞2, 𝑘2, 𝑣2𝑞1, 𝑘1, 𝑣1

𝑒1 𝑒2 𝑒3 𝑒4

𝑣1 𝑣2 𝑣3 𝑣4

𝑒4
′

𝑠1 𝑠2 𝑠3
𝑠4

The advance of recent language models

Reference: https://cmte.ieee.org/futuredirections/2023/04/24/how-much-bigger-can-should-llms-become/

Emergent Abilities of Large Language Models https://arxiv.org/abs/2206.07682

1. With the development of computational power, data, model and training technique, the trained

language model becomes larger and larger – from “language model” to “large language model”

 We find that when the scale of the model exceeds certain “critical point”, new abilities emerge.

https://cmte.ieee.org/futuredirections/2023/04/24/how-much-bigger-can-should-llms-become/
https://arxiv.org/abs/2206.07682

Emergent abilities
Model Scale Emergent abilities

BERT/GPT （2018） 12-layer Transformer

7000 books (4.6GB)

117 million parameters

Pre-training

To accomplish certain tasks (e.g., translation), we just need

to fine-tuning a pre-trained model, instead of training from

scratch.

GPT-2（2019） Same architecture

Extend training data to

40GB (top articles in Reddit)

1.5 billion parameters

Multi-task

The trained model can achieve good results on multiple

language tasks, without any fine-tuning or parameter update.

GPT-3（2020）
Codex（2021）
GPT-3.5（2022）

Training data extended to

600GB

Parameters extended to 175

billion

Including programming code

in training data(Codex)

Instruction fine-tuning and

RLHF (GPT-3.5)

In-Context Learning

The trained model can accomplish certain tasks via

providing examples in natural language.

“Please output the number of legs: 1 chick = 2 legs, 2

chicken = 4 legs, 3 chicken =”

Chain of Thought

The trained model can output steps via adding “Let’s think

step by step” in the prompt

The advance of recent language models

2. Techniques for aligning model output with people’s expectation

• Instruction fine-tuning

• Use supervised “instruction-answer” data pairs to fine-tuning the

pre-trained model

• Data collection is expensive, performs poor on open questions

(e.g., write a story about…)

• Reinforcement Learning from Human Feedback, RLHF

• Train a “reward” model to score the model’s generated output

• Fine-tuning the pre-trained model via reinforcement learning,

encouraging high-reward outputs and repress low-reward

outputs.

Reference: https://openai.com/blog/chatgpt

https://openai.com/blog/chatgpt

More about Transformer

• Natural Language Processing with Deep Learning CS224N/Ling284
https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture11-
prompting-rlhf.pdf

• Neural machine translation with a Transformer and Keras，
https://www.tensorflow.org/text/tutorials/transformer

• The Illustrated GPT-2 http://jalammar.github.io/illustrated-gpt2/

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture11-prompting-rlhf.pdf
https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture11-prompting-rlhf.pdf
https://www.tensorflow.org/text/tutorials/transformer
http://jalammar.github.io/illustrated-gpt2/

Thank you!

Xihan Li

Department of Computer Science,

University College London

xihan.li@cs.ucl.ac.uk

https://snowkylin.github.io

Feb 2024

mailto:xihan.li@cs.ucl.ac.uk
https://snowkylin.github.io/

	幻灯片 1: Learning and deep neural networks
	幻灯片 2: Contents
	幻灯片 3: Outline
	幻灯片 4: Deep Neural Networks are everywhere
	幻灯片 5: History of Deep Learning
	幻灯片 6: Cornerstones
	幻灯片 7: Computational model of a neuron
	幻灯片 8: Searching parameters
	幻灯片 9: Optimization via gradient descent
	幻灯片 10: Optimization via gradient descent
	幻灯片 11: Multilayer Neural Networks
	幻灯片 12: Backpropagation
	幻灯片 13: Feedforward network in matrix form
	幻灯片 14: Basic Neural networks for image and text
	幻灯片 15: Receptive field
	幻灯片 16: Convolutional layer (1D)
	幻灯片 17: Convolutional layer (1D)
	幻灯片 18: How to represent an image in a computer
	幻灯片 19: Convolutional layer (2D)
	幻灯片 20: LeNet 5
	幻灯片 21: More about CNN
	幻灯片 22: Sequential Data with temporal connections
	幻灯片 23: Process sequential data with a recurrent neural network
	幻灯片 24: How to represent a word for neural models?
	幻灯片 25: Word Embedding
	幻灯片 26: RNN Example: next word prediction
	幻灯片 27: More about RNN
	幻灯片 28: State of the art techniques
	幻灯片 29
	幻灯片 30: LLM as a next word predictor
	幻灯片 31: Transformer at a glance
	幻灯片 32: Attention mechanism
	幻灯片 33: Attention mechanism
	幻灯片 34: Attention mechanism
	幻灯片 35: The advance of recent language models
	幻灯片 36: Emergent abilities
	幻灯片 37: The advance of recent language models
	幻灯片 38: More about Transformer
	幻灯片 39: Thank you!

