

Logic Synthesis with Generative Deep Neural Networks

Xihan Li¹, Xing Li², Lei Chen², Xing Zhang², Mingxuan Yuan² and Jun Wang¹

- 1. Department of Computer Science, University College London
- 2. Huawei Noah's Ark Lab, Hong Kong, China

Speaker: Xihan Li (xihan.li@cs.ucl.ac.uk) IWLS 2024

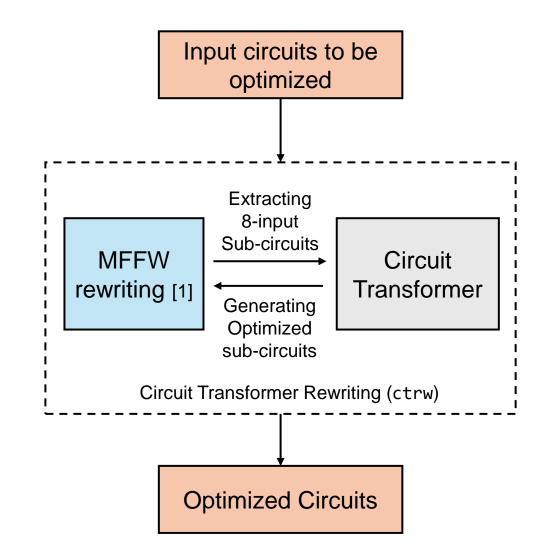
Introduction

A logic synthesis rewriter "ctrw" (Circuit Transformer Rewriting) powered by generative neural networks.

Highlight:

- ctrw guarantees preciseness (in contrast to ChatGPT that make mistakes occasionally).
- ctrw can improve itself (similar to self-play in AlphaGo, without human knowledge).
- Ctrw is effective (average improvement of ~30% while drw in abc is ~15%).

Note that this is an ongoing work. Currently ctrw runs slow.



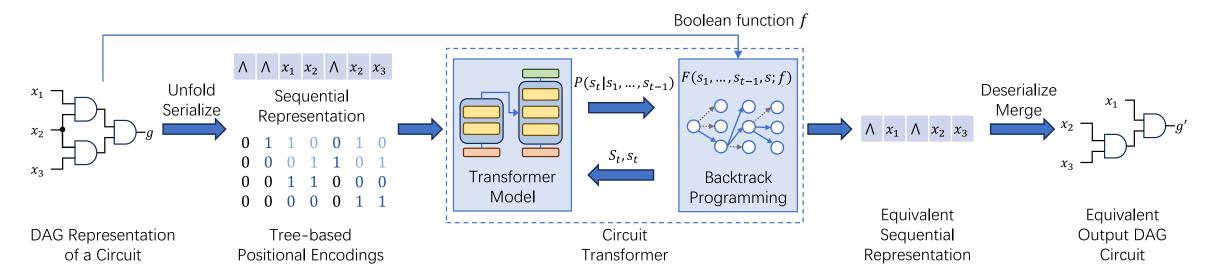
[1] X. Zhu et al., "A Database Dependent Framework for K-Input Maximum Fanout-Free Window Rewriting," in 2023 60th ACM/IEEE Design Automation Conference (DAC)

Circuit Transformer: Sequential Generation of Circuits with Equivalence Preserved

This work is based on Circuit Transformer [2], a generative neural model with two features:

- 1. It allows sequential generation of circuits with next token prediction, just like ChatGPT to natural languages.
- 2. The generated circuit is precisely equivalent to an existing input circuit.

[2] Li, Xihan, Xing Li, Lei Chen, Xing Zhang, Mingxuan Yuan, and Jun Wang. "Circuit Transformer: End-to-End Circuit Design by Predicting the Next Gate." arXiv, March 13, 2024. https://doi.org/10.48550/arXiv.2403.13838.



Train a Circuit Transformer for Small-sized Logic Synthesis

End-to-end, supervised learning with:

Input: randomly generated circuits with unique canonicalizations

- The circuit size is 8-input, 2-output in experiments
- realistic circuits do NOT work well

Output: optimized circuits with existing optimizers (resyn2 in abc)



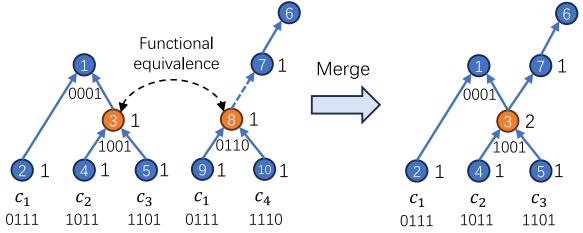
Circuit Size Minimization as a Markov Decision Process

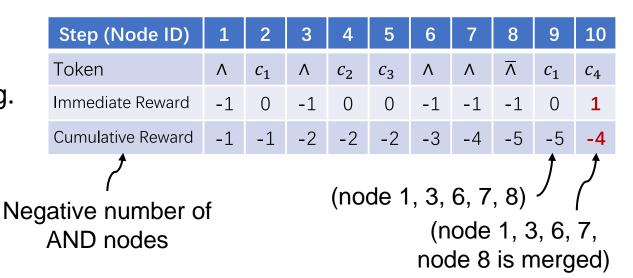
We can minimize the number of AND gates of the generated circuit by attaching an immediate reward function $R(g_1, ..., g_t, g)$ to the generation of token *s* at step *t*

$$R(g_1, \dots, g_t, g) = \Delta + \begin{cases} -1, g = \Lambda \text{ or } g = \overline{\Lambda} \\ 0, \text{ otherwise} \end{cases}$$

 Δ reflects the refinement of equivalent node merging.

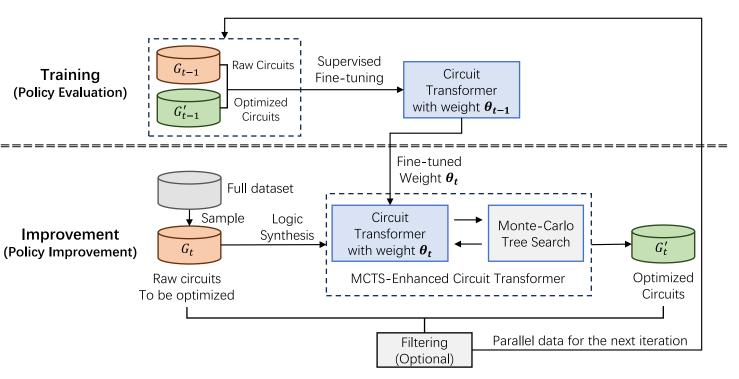
We refine the generative neural model to maximize the cumulative reward (i.e., minimize the number of AND nodes)





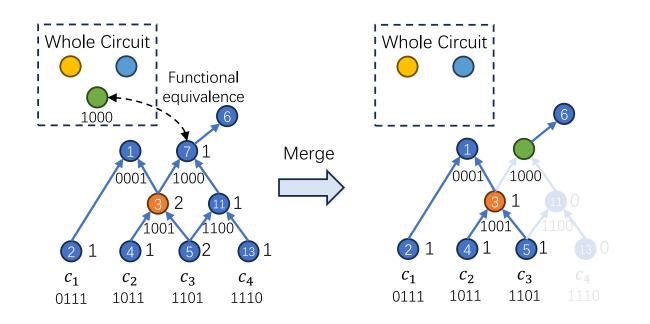
Iterative Self-Improvement Training

- Iteratively fine-tune the model to generate more compact circuits with Monte-Carlo tree search (MCTS) based self-improving.
- **Training stage**: fine-tune the model with supervised data pairs (circuits before and after optimization)
- **Improvement stage**: generate new supervised data pairs with the fine-tuned model and MCTS



Guided DAG-aware Rewriting

- We refined the immediate reward to reflect the node merging in the rewriting process.
- Then MCTS is guided by the reward function to minimize the size of final rewritten circuit after node merging (rather than minimizing the sub-circuit).



Step (Node ID)	1	2	3	4	5	6	7	8	9	10	11	12	13
Token	٨	<i>c</i> ₁	٨	<i>c</i> ₂	<i>c</i> ₃	٨	٨	$\overline{\wedge}$	<i>c</i> ₁	<i>C</i> ₄	٨	<i>C</i> ₃	<i>C</i> ₄
Immediate Reward	-1	0	-1	0	0	-1	-1	-1	0	1	-1	0	2
Cumulative Reward	-1	-1	- 2	-2	-2	- 3	-4	- 5	- 5	-4	- 5	- 5	-3

Node 7 is replaced by the green node in the whole circuit. Node 11 is dereferenced after replacement.

L C L

Experiments

On 22 small circuits (#(AND) < 100) generated from IWLS 2023 contest benchmark.

Our proposed approach successfully generated strictly feasible circuits (checked via cec), and demonstrated significant effectiveness in reducing circuit size

However, as a preliminary work, the scalability and efficiency still needs to be improved, especially for MCTS.

	Methods	Avg. Improv.	Time cost
	Drw Rewriting (ABC)	15.42%	<0.01s
	MFFW Rewriting (in Python)	21.16%	1-300s
	Ctrw (w/o self-improvement)	18.55%	1-250s
	Ctrw	23.23%	1-285s
).	Ctrw with MCTS	26.02%	300-31000s
)	Ctrw with MCTS and guided DAG-aware Rewriting	30.19%	240-35000s

Thank you!

Xihan Li

Department of Computer Science

University College London

Scan the QR code for the full paper, this slide, the poster and future updates. Or visit:

https://snowkylin.github.io/publications

Correspondence email: xihan.li@cs.ucl.ac.uk