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Recent advances In large language models (LLMs) have
computationally mastered human language through predictive
modeling. Extending this concept to electronic design, we
explore the idea of a "circuit model" trained on circuits to predict
the next logic gate, addressing structural complexities and
eguivalence constraints. By encoding circuits as memory-less
trajectories and employing equivalence-preserving decoding, our
trained "Circuit Transformer"” with 88M parameters outperforms
existing neural approaches in both feasibility and optimality.

1. Neural Encoding of Circults

Circuits are “unfolded” as a depth-first traversal trajectory.
Allow redundancy for the ease of neural decoding.
Tree positional encodings to indicate the position of nodes.

Standard encoding (AIGER)
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2. Circult Model: Predict the Next Gate

Circuit model: P(s¢|sq, ..., S¢—1), the probabllity of each gate or
Input at step t, given the previous t — 1 nodes.

Design circuits via simply predicting the next logic gate, just like
what large language models do to master human languages!
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The pipeline of Circuit Transformer that generates a new circuit that is strictly equivalent to an existing one. The backtracking
programming module acts as a masking layer at the end of the Transformer decoder.

3. Generating Circuits with Equivalence Preserved

In this work, we pay special attention to step-by-step generation of
circuits (with encodings sy, ..., s,,) that are strictly equivalent to an
existing circuit g. To achieve this, we apply backtrack programming
In each step t to find feasible candidates s; € S;, so that s; will not
result in a violation of equivalence constraints (so the “cutoff
properties” F(sq, ..., S¢; g) holds). In this way, we remodel the
constrained generation problem as

Find sq,..,s,
s.t. F(s{..,S:;59)holds, t=1,...,n
S1, .-, Sy represents a unique circuit
We find that such a process can be implemented efficiently with

our proposed neural encoding, together with three-valued logic
and short-circuit evaluation.
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4. EXperiments

We supervisedly trained a Circuit Transformer on random circuits
to solve the circuilt size minimization problem, generating
equivalent yet more compact forms of input circults.

Evaluation: both on synthetic circuits and real IWLS benchmarks
Baselines: Two other popular circuit encodings

Random circuits IWLS FFWs
Methods Average Average
Unsuccessful .V .g Unsuccessful .V .g
circuit circuit
cases : cases .
size size
Boolean Chain 5.07% (5.07%) 15.25 11.36% (11.26%) 17.24

Boolean Chain (beam size = 16) 2.16% (2.16%) 14.89 6.34% (6.29%) 17.15
Boolean Chain (beam size = 128) | 1.91% (1.91%) 14.87 5.97% (5.94%) 17.15

AIGER 4.32% (4.32%) 15.14 8.35% (7.77%) 17.19
AIGER (beam size = 16) 1.85% (1.85%) 14.87 4.62% (4.37%) 17.12
AIGER (beam size = 128) 1.71% (1.71%) 14.86 4.24% (3.99%) 17.12
Circuit Transformer w/o TPE 2.14% (0%) 15.02 6.63% (0%) 17.33
Circuit Transformer 1.14% (0%) 14.79 4.76% (0%) 17.17
Circuit Transformer (K = 10) 0.20% (0%) 14.02 2.83% (0%) 16.92
Circuit Transformer (K = 100) 0.17% (0%) 13.73 2.63% (0%) 16.73
Resyn2 (ground truth for training) | / 14.56 / 16.82

Our proposed approach outperforms existing approaches in both
feasibility and optimality.
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4. Cooperate Circult Transformer with Fanout-
Free Window Rewriting

We leverage the fanout-free window rewriting framework in [2],
and apply our trained Circuit Transformer with self-improvement
to replace each fanout-free window by a more compact one.
MCTS can also be applied during the rewriting. Such

¢ ¢ s ¢ ¢ 6 o cs replacement enables additional flexibility that the replaced circuit
0111 1011 1101 0111 1110 0111 1011 1101 does not require to be equivalent to the sub-circuit It replaces.

[2] https://ieeexplore.ieee.org/document/10247727
---ﬂﬂﬂ-ﬂn

In this work, we Introduced the first logic synthesis operator
powered by generative deep neural networks. More specifically, Functional
a rewriting operator Is developed based on the Circuit equivalence
Transformer model, named ctrw (Circuit Transformer Rewriting), T
which incorporates the following technigques: (1) a two-stage
training scheme for the Circuit Transformer tailored for logic
synthesis, with iterative improvement of optimality through self-
Improvement training; (2) integration of the Circuit Transformer
with state-of-the-art rewriting techniques to address scalability
Issues, allowing for guided DAG-aware rewriting. Experimental
results on the IWLS 2023 contest benchmark demonstrate the
effectiveness of our proposed rewriting methods.

5. Guided DAG-aware Rewriting
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Process

We can minimize the number of AND gates of the generated . { stage t lel data with f 6. Experiments
circuit by attaching an immediate reward function mprovement stage: generate new parallel data with tine-

R(sy, ..., St, ) to the generation of token s at step t, so that the tuned modef and MCTS Methods Avg. Improv.

* Training stage: fine-tune the model with parallel data

generation process can be modelled as an MDP. Y Drw Rewriting (ABC) 15.42% <0.01s
. State at step t: g4, ..., g raining CGD_‘ o s Supervec — MFFW Rewriting (in Python) 21.16% 1-300s
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generated circuits —  MCTS-Enhanced Cireuit Transformer L Optimized Our proposed approach successfully generated strictly feasible
o be oprmized s circuits (checked via cec), and demonstrated significant
o S effectiveness In reducing circuit size. (However, the efficiency
(Optional) still needs to be improved, especially for MCTS)
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