
The pipeline of Circuit Transformer that generates a new circuit that is strictly equivalent to an existing one. The backtracking

programming module acts as a masking layer at the end of the Transformer decoder.

Circuit Transformer: End-to-end Circuit Design by Predicting the Next Gate

Xihan Li1, Xing Li2, Lei Chen2, Xing Zhang2, Mingxuan Yuan2 and Jun Wang1

1. Department of Computer Science, University College London 2. Huawei Noah’s Ark Lab, Hong Kong, China

1. Neural Encoding of Circuits

Circuits are “unfolded” as a depth-first traversal trajectory.

Allow redundancy for the ease of neural decoding.

Tree positional encodings to indicate the position of nodes.

2. Circuit Model: Predict the Next Gate

Circuit model: 𝑃(𝑠𝑡|𝑠1, … , 𝑠𝑡−1), the probability of each gate or

input at step 𝑡, given the previous 𝑡 − 1 nodes.

Design circuits via simply predicting the next logic gate, just like

what large language models do to master human languages!

3. Generating Circuits with Equivalence Preserved

In this work, we pay special attention to step-by-step generation of

circuits (with encodings 𝑠1, … , 𝑠𝑛) that are strictly equivalent to an

existing circuit 𝑔. To achieve this, we apply backtrack programming

in each step 𝑡 to find feasible candidates 𝑠𝑡 ∈ 𝑆𝑡, so that 𝑠𝑡 will not

result in a violation of equivalence constraints (so the “cutoff

properties” 𝐹 𝑠1, … , 𝑠𝑡; 𝑔 holds). In this way, we remodel the

constrained generation problem as

𝐅𝐢𝐧𝐝 𝑠1, … , 𝑠𝑛

𝐬. 𝐭. 𝐹 𝑠1, … , 𝑠𝑡; 𝑔 holds, 𝑡 = 1, … , 𝑛

 𝑠1, … , 𝑠𝑛 represents a unique circuit

We find that such a process can be implemented efficiently with

our proposed neural encoding, together with three-valued logic

and short-circuit evaluation.

4. Experiments

We supervisedly trained a Circuit Transformer on random circuits

to solve the circuit size minimization problem, generating

equivalent yet more compact forms of input circuits.

Evaluation: both on synthetic circuits and real IWLS benchmarks

Baselines: Two other popular circuit encodings

Our proposed approach outperforms existing approaches in both

feasibility and optimality.

Recent advances in large language models (LLMs) have

computationally mastered human language through predictive

modeling. Extending this concept to electronic design, we

explore the idea of a "circuit model" trained on circuits to predict

the next logic gate, addressing structural complexities and

equivalence constraints. By encoding circuits as memory-less

trajectories and employing equivalence-preserving decoding, our

trained "Circuit Transformer" with 88M parameters outperforms

existing neural approaches in both feasibility and optimality.

Scan the QR code for the full paper, poster and

future updates. Or visit:

https://snowkylin.github.io/publications

Correspondence email: xihan.li@cs.ucl.ac.uk

Logic Synthesis with Generative Deep Neural Networks

Xihan Li1, Xing Li2, Lei Chen2, Xing Zhang2, Mingxuan Yuan2 and Jun Wang1

1. Department of Computer Science, University College London 2. Huawei Noah’s Ark Lab, Hong Kong, China

1. Train a Circuit Transformer for Small-sized

Logic Synthesis

End-to-end, supervised learning with:

• Input: randomly generated circuits with unique

canonicalizations (realistic circuits do NOT work well)

• Output: optimized circuits with existing optimizers (resyn2)

2. Circuit Size Minimization as a Markov Decision

Process

We can minimize the number of AND gates of the generated

circuit by attaching an immediate reward function

𝑅(𝑠1, … , 𝑠𝑡 , 𝑠) to the generation of token 𝑠 at step 𝑡, so that the

generation process can be modelled as an MDP.

• State at step 𝑡: 𝑔1, … , 𝑔𝑡

• Action: 𝑔

• Immediate reward: 𝑅 𝑔1, … , 𝑔𝑡, 𝑔 = Δ + ቊ
−1, 𝑔 = ⋀ or 𝑔 = ഥ⋀

0, otherwise

 (In which Δ reflects the refinement of equivalent node merging)

• Cumulative reward: negative number of AND nodes in the

generated circuits

3. Iterative Self-Improvement Training

Iteratively fine-tune the model to generate more compact circuits

with Monte-Carlo tree search (MCTS) based self-improving.

• Training stage: fine-tune the model with parallel data

• Improvement stage: generate new parallel data with fine-

tuned model and MCTS

4. Cooperate Circuit Transformer with Fanout-

Free Window Rewriting

We leverage the fanout-free window rewriting framework in [2],

and apply our trained Circuit Transformer with self-improvement

to replace each fanout-free window by a more compact one.

MCTS can also be applied during the rewriting. Such

replacement enables additional flexibility that the replaced circuit

does not require to be equivalent to the sub-circuit it replaces.

[2] https://ieeexplore.ieee.org/document/10247727

6. Experiments

Our proposed approach successfully generated strictly feasible

circuits (checked via cec), and demonstrated significant

effectiveness in reducing circuit size. (However, the efficiency

still needs to be improved, especially for MCTS)

5. Guided DAG-aware Rewriting

Methods Avg. Improv. Time cost

Drw Rewriting (ABC) 15.42% <0.01s

MFFW Rewriting (in Python) 21.16% 1-300s

Ctrw (w/o self-improvement) 18.55% 1-250s

Ctrw 23.23% 1-285s

Ctrw with MCTS 26.02% 300-31000s

Ctrw with MCTS and guided DAG-

aware Rewriting

30.19% 240-35000s

We refined the

immediate reward to

reflect the node

merging in the

rewriting process.

Then MCTS is

guided by the

reward function to

minimize the size of

final rewritten circuit

after node merging.

In this work, we introduced the first logic synthesis operator

powered by generative deep neural networks. More specifically,

a rewriting operator is developed based on the Circuit

Transformer model, named ctrw (Circuit Transformer Rewriting),

which incorporates the following techniques: (1) a two-stage

training scheme for the Circuit Transformer tailored for logic

synthesis, with iterative improvement of optimality through self-

improvement training; (2) integration of the Circuit Transformer

with state-of-the-art rewriting techniques to address scalability

issues, allowing for guided DAG-aware rewriting. Experimental

results on the IWLS 2023 contest benchmark demonstrate the

effectiveness of our proposed rewriting methods.

(node 1, 3, 6, 7,

node 8 is merged)

Negative number of

AND nodes

(node 1, 3, 6, 7, 8)

Node 7 is replaced by the green node in the whole

circuit. Node 11 is dereferenced after replacement.

Scan the QR code for the full paper, poster and future updates. Or visit:

https://snowkylin.github.io/publications

Correspondence email: xihan.li@cs.ucl.ac.uk

https://ieeexplore.ieee.org/document/10247727

	幻灯片 1: Circuit Transformer: End-to-end Circuit Design by Predicting the Next Gate
	幻灯片 2: Logic Synthesis with Generative Deep Neural Networks

