
The pipeline of Circuit Transformer that generates a new circuit that is strictly equivalent to an existing one. The backtracking 

programming module acts as a masking layer at the end of the Transformer decoder.
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1. Neural Encoding of Circuits

Circuits are “unfolded” as a depth-first traversal trajectory.

Allow redundancy for the ease of neural decoding.

Tree positional encodings to indicate the position of nodes.

2. Circuit Model: Predict the Next Gate

Circuit model: 𝑃(𝑠𝑡|𝑠1, … , 𝑠𝑡−1), the probability of each gate or 

input at step 𝑡, given the previous 𝑡 − 1 nodes.

Design circuits via simply predicting the next logic gate, just like 

what large language models do to master human languages!

3. Generating Circuits with Equivalence Preserved

In this work, we pay special attention to step-by-step generation of 

circuits (with encodings 𝑠1, … , 𝑠𝑛) that are strictly equivalent to an 

existing circuit 𝑔. To achieve this, we apply backtrack programming 

in each step 𝑡 to find feasible candidates 𝑠𝑡 ∈ 𝑆𝑡, so that 𝑠𝑡 will not 

result in a violation of equivalence constraints (so the “cutoff 

properties” 𝐹 𝑠1, … , 𝑠𝑡; 𝑔  holds). In this way, we remodel the 

constrained generation problem as

𝐅𝐢𝐧𝐝 𝑠1, … , 𝑠𝑛 

𝐬. 𝐭.  𝐹 𝑠1, … , 𝑠𝑡; 𝑔  holds, 𝑡 = 1, … , 𝑛 

        𝑠1, … , 𝑠𝑛 represents a unique circuit

We find that such a process can be implemented efficiently with 

our proposed neural encoding, together with three-valued logic 

and short-circuit evaluation.

4. Experiments

We supervisedly trained a Circuit Transformer on random circuits 

to solve the circuit size minimization problem, generating 

equivalent yet more compact forms of input circuits.

Evaluation: both on synthetic circuits and real IWLS benchmarks

Baselines: Two other popular circuit encodings

Our proposed approach outperforms existing approaches in both 

feasibility and optimality.

Recent advances in large language models (LLMs) have 

computationally mastered human language through predictive 

modeling. Extending this concept to electronic design, we 

explore the idea of a "circuit model" trained on circuits to predict 

the next logic gate, addressing structural complexities and 

equivalence constraints. By encoding circuits as memory-less 

trajectories and employing equivalence-preserving decoding, our 

trained "Circuit Transformer" with 88M parameters outperforms 

existing neural approaches in both feasibility and optimality.
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1. Train a Circuit Transformer for Small-sized 

Logic Synthesis

End-to-end, supervised learning with:

• Input: randomly generated circuits with unique 

canonicalizations (realistic circuits do NOT work well)

• Output: optimized circuits with existing optimizers (resyn2)

2. Circuit Size Minimization as a Markov Decision 

Process

We can minimize the number of AND gates of the generated 

circuit by attaching an immediate reward function 

𝑅(𝑠1, … , 𝑠𝑡 , 𝑠) to the generation of token 𝑠 at step 𝑡, so that the 

generation process can be modelled as an MDP.

• State at step 𝑡: 𝑔1, … , 𝑔𝑡  

• Action: 𝑔

• Immediate reward: 𝑅 𝑔1, … , 𝑔𝑡, 𝑔 = Δ + ቊ
−1, 𝑔 = ⋀ or 𝑔 = ഥ⋀

0, otherwise 

  (In which Δ reflects the refinement of equivalent node merging)

• Cumulative reward: negative  number of AND nodes in the  

generated circuits

3. Iterative Self-Improvement Training

Iteratively fine-tune the model to generate more compact circuits 

with Monte-Carlo tree search (MCTS) based self-improving.

• Training stage: fine-tune the model with parallel data

• Improvement stage: generate new parallel data with fine-

tuned model and MCTS

4. Cooperate Circuit Transformer with Fanout-

Free Window Rewriting

We leverage the fanout-free window rewriting framework in [2], 

and apply our trained Circuit Transformer with self-improvement 

to replace each fanout-free window by a more compact one. 

MCTS can also be applied during the rewriting. Such 

replacement enables additional flexibility that the replaced circuit 

does not require to be equivalent to the sub-circuit it replaces.

[2] https://ieeexplore.ieee.org/document/10247727 

6. Experiments

Our proposed approach successfully generated strictly feasible 

circuits (checked via cec), and demonstrated significant 

effectiveness in reducing circuit size. (However, the efficiency 

still needs to be improved, especially for MCTS)

5. Guided DAG-aware Rewriting

Methods Avg. Improv. Time cost

Drw Rewriting (ABC) 15.42% <0.01s

MFFW Rewriting (in Python) 21.16% 1-300s

Ctrw (w/o self-improvement) 18.55% 1-250s

Ctrw 23.23% 1-285s

Ctrw with MCTS 26.02% 300-31000s

Ctrw with MCTS and guided DAG-

aware Rewriting

30.19% 240-35000s

We refined the 

immediate reward to 

reflect the node 

merging in the 

rewriting process. 

Then MCTS is 

guided by the 

reward function to 

minimize the size of 

final rewritten circuit 

after node merging.

In this work, we introduced the first logic synthesis operator 

powered by generative deep neural networks. More specifically, 

a rewriting operator is developed based on the Circuit 

Transformer model, named ctrw (Circuit Transformer Rewriting), 

which incorporates the following techniques: (1) a two-stage 

training scheme for the Circuit Transformer tailored for logic 

synthesis, with iterative improvement of optimality through self-

improvement training; (2) integration of the Circuit Transformer 

with state-of-the-art rewriting techniques to address scalability 

issues, allowing for guided DAG-aware rewriting. Experimental 

results on the IWLS 2023 contest benchmark demonstrate the 

effectiveness of our proposed rewriting methods.

(node 1, 3, 6, 7, 

node 8 is merged)

Negative number of 

AND nodes

(node 1, 3, 6, 7, 8)

Node 7 is replaced by the green node in the whole 

circuit. Node 11 is dereferenced after replacement.
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