
Circuit Transformer:
A Transformer That Preserves Logical Equivalence

Xihan Li1, Xing Li2, Lei Chen2, Xing Zhang2, Mingxuan Yuan2, Jun Wang1
1 University College London 2 Huawei Noah’s Ark Lab, Hong Kong

{xihan.li,jun.wang}@cs.ucl.ac.uk
{li.xing2,lc.leichen,zhangxing85,Yuan.Mingxuan}@huawei.com

Abstract

Despite the significant advancements in next token prediction models, they are
often considered less promising for logic tasks that demand exact precision. In this
study, we introduce an end-to-end Transformer model, the “Circuit Transformer”,
which ensures such exactness by generating new logic circuits that are strictly
equivalent to existing ones. This is accomplished through a novel approach that for-
mulates equivalent circuit generation as a constrained sequential generation process
for backtrack programming. Then we propose a top-down and sequential circuit
representation method with advantageous “cutoff properties”, enabling next-token
prediction models to generate circuits in a manner similar to natural language gen-
eration, while strictly adhering to the feasible region. This equivalence-preserving
property also allows optimization methods to explore freely without violating con-
straints. Experimentally, we trained an 88-million-parameter Circuit Transformer
to generate equivalent yet more compact forms of input circuits, outperforming
existing neural approaches on both synthetic and real world benchmarks, without
any violation of complex equivalence constraints.

1 Introduction

In this work, we focus on generating a proper logic gate implementation g of a Boolean function

y = f(x), (1)

in which x = (x1, . . . , xN) ∈ {0, 1}N is the N-dimensional input, y = (y1, . . . , yM) ∈ {0, 1}M
is the M-dimensional output. While a Boolean function f may have many different logic gate
implementations g, all these implementations are strictly constrained by the logical equivalence. That
is defined as g ∈ C(f), in which

C(f) = {g|gi(x) = fi(x) ∀x ∈ {0, 1}N , i = 1, . . . ,M} (2)

is the feasible region of g under f consisting of 2N ·M equality constraints. A logic gate implemen-
tation g of a Boolean function is also called a circuit. 1 An example is shown in Figure 1.

This equivalent circuit generation problem is highly concerned in the fields of Boolean algebra and
computational complexity theory, especially in the context of finding a compact form of a circuit g
with minimal number of logic gates (circuit size minimization). That is

min |g′| s.t. g′ ∈ C(g), (3)

where |g′| is the number of logic gates2 in g′. This leads to important research areas such as logic
optimization [43], minimum circuit size problem [14, 11] and circuit complexity theory [42, 35].

1More specifically, combinatorial logic circuit, which is referred to as “circuit” in short in this paper unless
otherwise stated.

2NOT gates (inverters) are not counted in our paper to align with the mainstream research setting.

Preprint. Under review.

x3 x2 x1 x0 y1 y0 x3 x2 x1 x0 y1 y0
0 0 0 0 0 1 1 0 0 0 0 1
0 0 0 1 0 0 1 0 0 1 0 0
0 0 1 0 0 0 1 0 1 0 0 0
0 0 1 1 1 1 1 0 1 1 1 1
0 1 0 0 0 1 1 1 0 0 0 0
0 1 0 1 0 0 1 1 0 1 1 1
0 1 1 0 0 0 1 1 1 0 0 0
0 1 1 1 1 1 1 1 1 1 1 1

(a) A Boolean function (y1, y0) = f(x3, x2, x1, x0),
in which x0, x1, x2, x3, y0, y1 ∈ {0, 1}.

x0

x1

x2

x3

g0

g1

(b) An initial feasible implementation of the Boolean
function f in Figure 1a, with 7 AND/NAND gates.

x0

x1

x2

x3

g0

g1

(c) A feasible implementation of f with 5 AND/NAND
gates, which is optimal in size.

x0

x1

x2

x3

g0

g1

(d) An infeasible implementation. In this circuit g0 =
0 ̸= y0 when x = (1, 1, 0, 1).

Figure 1: An example showing how a Boolean function can be implemented by circuits, i.e., cascade
connections of logic gates. and are the AND gate and NOT gate respectively, and is the
NAND gate, an AND gate followed by a NOT gate. The circuits shown in Figure 1b and Figure 1c
are both feasible implementations of f , while the latter is more compact in size. The circuit shown in
Figure 1d is infeasible, even if the difference is as small as one bit out of 32.

Practically, it also lies in the core of electronic design automation (EDA) in the semiconductor
industry, as chips are built upon basic logic gates to fulfill certain Boolean functionalities. A compact
circuit allows for more chips to be fabricated on a wafer, or more components to be integrated in a
single chip, thereby heavily impacting the cost and performance of final chip products.

However, like many other logical and constrained tasks, symbolic approaches have taken the lead of
tackling the aforementioned problem for decades, both in theory and practice. For the circuit size
minimization problem, it is typically reduced to a series of Boolean satisfactory (SAT) problems and
then solved via SAT solvers [17, 15, 37, 10]. More scalable methods in the EDA industry involve
multiple heuristic operators, which are executed sequentially in a pre-defined operator sequence to
reduce the size of an initial implementation [3, 23, 53]. While machine learning (ML) approaches
emerge in recent years, they tackle sub-problems in aforementioned methods, such as SAT solver
acceleration [32, 44, 51, 9] and operator sequence scheduling [48, 12, 8, 52, 46]. Direct generation
of feasible circuits in the context of ML is regarded as extremely difficult, due to the complicated
constraints and strict feasibility requirement [13, 21, 38, 29].

In this work, we firstly drive next token prediction models — especially Transformer models —
to generate strictly feasible circuits while preserving logical equivalence. We model the problem
of equivalent circuit generation as a constrained sequential pattern generation process, which can
be solved with backtrack programming, a promising framework for constraint satisfaction. Then,
we proposed a sequential representation of circuits, with associated “cutoff properties” so as to
cooperate with backtrack programming. With top-down specification, three-valued logic and short-
circuit evaluation techniques introduced, our proposed cut-off properties for backtrack programming
owns beneficial characteristics, allowing smooth inference of circuits analogous to typical natural
language generation, while the equivalence constraints are strictly satisfied. With tree-based positional
encodings [33], such a representation can also serve as a decent neural encoding of circuits. Finally, a
transition approach is proposed to enable tree-based generation method to generate directed acyclic
graphs via merging nodes with equivalent functionalities.

Moreover, such an equivalence-preserving representation enables decisional optimization methods to
efficiently generate equivalent circuit with desired objective (e.g., size minimization). Without the
barrier of constraint violation, equivalent circuit generation can be modelled as a Markov decision
process with a fixed action space. The only requirement is to designate an immediate reward function
to reflect the optimization goal. An example on circuit size minimization problem is also attached.

To demonstrate the effectiveness of our proposed techniques, we developed an end-to-end approach
to tackle the aforementioned circuit size minimization problem. A Transformer model of 88 million

2

⋀ ⋀ 𝑥1 𝑥2 ⋀ 𝑥2 𝑥3

0
0
0
0

1
0
0
0

1
0
1
0

0
1
1
0

0
1
0
0

1
0
0
1

0
1
0
1

DAG Representation
of a Circuit

Tree-based
Positional Encodings

Sequential
Representation

⋀ 𝑥1 ⋀ 𝑥2 𝑥3

Equivalent
Sequential

Representation

Equivalent
Output DAG

Circuit

Transformer
Model

Unfold
Serialize

𝑃(𝑠𝑡|𝑠1, … , 𝑠𝑡−1) Deserialize
Merge

Boolean function 𝑓

Backtrack
Programming

𝐹(𝑠1, … , 𝑠𝑡−1, 𝑠; 𝑓)

𝑆𝑡 , 𝑠𝑡

Circuit
Transformer

𝑥1

𝑥2

𝑥3

𝑔

𝑥1

𝑥2

𝑥3

𝑔′

Figure 2: The pipeline of Circuit Transformer that transforms a circuit to a strictly equivalent one.
The backtracking programming module acts as a masking layer at the end of the Transformer decoder.

parameters is trained in a supervised way to generate strictly equivalent yet more compact implemen-
tations of given circuits. Experimental results show that the trained model is capable of generating
strictly equivalent implementations for all unseen circuits in the test set, and the size decrease is close
to the traditional method that serves as the supervised signal.

To conclude, we make the following contributions:

• A novel formulation of the equivalent circuit generation problem as a sequential pattern
generation process for backtrack programming.

• A sequential circuit representation method with beneficial cutoff properties, that allows next
token prediction models to generate strictly equivalence-preserving circuits analogous to
natural language generation, and can also serve as a neural encoding of circuits.

• A formulation of circuit optimization as a Markov decision process, with an immediate reward
function assigned to reflect the optimization goal.

• An end-to-end Transformer model “Circuit Transformer” that allows transformation between
logic circuits with strict equivalence preserved, with extensive experiments on the circuit size
minimization problem demonstrating its exact feasibility of complex equivalence constraints.

2 Related Work

Recent years have witnessed the tremendous success of next token prediction models, especially
Transformer models [41] behind mainstream large language models (LLM). However, due to their
probabilistic nature, such models are usually less promising in domains requiring exact preciseness.
Therefore, the mainstream paradigm of ML in such domains is to aid traditional methods in solving
sub-problems that are more relaxed with respect to exactness. For example, AlphaGeometry [40]
trained a Transformer model to aid geometry theorem proving, which requires strict exactness,
by suggesting candidate auxiliary points that does not require such exactness. In the context of
circuit design, such relaxed sub-problems include SAT solver acceleration [32, 44, 51, 9], circuit
representation learning [50, 47, 19, 45], learning based graph optimization [28, 20], operator sequence
scheduling [48, 12, 8, 52, 46], and placement and routing [22, 5].

Nonetheless, there are a few research works [31, 30, 6] that attempt to generate circuits or logical
expressions directly via next token prediction models. However, none of them takes feasibility
guarantee into consideration, and not surprisingly, failure cases do commonly exist in their reported
results, which limit their practical usage. In [31], 20% - 70% generated circuits violate the input
specification in different datasets, while a follow-up work [30] mitigates the invalid percentage to
16% - 65% with pre-trained language models. In [6], 5% - 10% cases failed to be fully recovered
when the number of operators are between 25 and 50. Apart from the low-level circuit generation,
many researchers focus on transferring the software code generation capability of LLM to high-level
hardware code generation, but these methods still suffer from functional inequivalence [21, 38, 29].

There are also research works that guarantee the feasibility of solutions via action masking, especially
for problems involving routing such as maze game, traveling salesman problem, and vehicle routing
problem [27, 18, 7]. However, these problems are usually intuitive to be sequentially modelled,
allowing action masks to simply filter invalid actions such as wall-hitting directions and visited cities.
Action masking techniques under complicated constraints have yet to be explored.

For sequential representation of gate-level circuits, existing formats include graph-based ones like
AIGER [2] and BLIF [1], and code-based ones like Verilog [39] and VHDL [36]. The former
ones specify a logic circuit by listing all the gates with their connection to child nodes, which can
be regarded as a specialization of adjacency list to represent a graph. The latter ones are more

3

general hardware description languages that are close to programming languages in format. However,
they lack essential characteristics that allow cutoff properties to be defined under the framework of
backtrack programming.

3 Methods

To ensure that next-token prediction models consistently produce circuits that meet all 2N · M
equivalence constraints specified in Equation 2, we integrate these models with a backtracking
programming framework. We then introduce a novel sequential representation of circuits designed
to work efficiently within this framework. Additionally, we propose a Markov decision process
formulation to optimize the generated circuits while maintaining equivalence.

3.1 Equivalent Circuit Generation with Backtrack Programming

Next token prediction targets sequential generation, that is, a series of tokens s1, s2, . . . is sampled
from a probability distribution P (st|s1, . . . , st−1) in a recursive manner. To generate sequences
s1, . . . , sn with strict constraints to make sure that certain property F (s1, . . . , sn) ∈ {0, 1} holds, a
promising approach is backtrack programming [16]. It involves the invention of intermediate “cutoff”
properties F (s1, . . . , st) for 1 ≤ t < n, which have the following two characteristics
Characteristic 3.1 (Inheritability). F (s1, . . . , st) is true whenever F (s1, . . . , st+1) is true;
Characteristic 3.2 (Incrementality). F (s1, . . . , st) is fairly easy to test, if F (s1, . . . , st−1) holds.

Proper cutoff properties allow candidate sequences to be incrementally built towards the solution,
and backtrack when a candidate cannot possibly be completed to a feasible solution. Given partial
sequence s1, . . . , st at time step t that F (s1, . . . , st) holds, the feasibility of the next token st+1 can
be tested quickly via F (s1, . . . , st, st+1), and backtrack can occur when all st+1 has been recursively
explored. A detailed introduction of the framework is leaved in the appendix.

Following this direction, to leverage next token prediction to generate strictly equivalent circuits, we
aim to find a proper sequential representation of circuits, as well as proper cutoff properties in each
step to indicate the equivalence, so that we can remodel the equivalent circuit generation problem

find g s.t. g ∈ C(f) (4)
as a constrained generation process of sequential patterns

find s1, s2, . . . , sn
s.t. F (s1, . . . , st; f) holds, t = 1, . . . , n (5)

s1, . . . , sn represents a unique circuit
so as to apply backtrack programming to guarantee the feasibility. In Equation 5, s1, . . . , st is a series
of sequential patterns and represents a class of circuits, which will be elaborated in the next section.
F (s1, . . . , st; f) is the cutoff property in step t, which holds if and only if the circuits represented by
s1, . . . , st are all within the feasible region C(f).

In such a way, given a next token prediction model
P (st|s1, . . . , st−1) (6)

that provides the probability distribution of st given the previous tokens s1, . . . , st−1, we can
generate the circuit by Algorithm 1, which is an adaptation of the backtrack programming framework
introduced in [16] with candidate tokens ordered by the probability distribution.

3.2 A Sequential Representation of Circuits with Cutoff Properties

With the new formulation in Equation 5 and Algorithm 1, the circuit generation problem reduces
to finding a sequential representation s1, s2, . . . of circuits, with corresponding cutoff properties
F (s1, . . . , st; f), 1 ≤ t < n satisfying Characteristic 3.1 and Characteristic 3.2 that keep the
sequential representation within the equivalence class of f . Moreover, as our goal is to generate
one rather than all feasible circuits, the most efficient circumstance in Algorithm 1 is that the
“backtracking” process in line 11-14 is never executed. That is, St ̸= ∅ all the time. Thus, it is
desirable for an efficient representation to guarantee this, avoiding any compulsory backtracking
when only a single circuit is required to be delivered. That is,

4

Algorithm 1 Equivalent Circuit generation with Backtrack Programming
Input: The Boolean function f that the generated circuit should be equivalent to. Next token prediction model

P (st|s1, . . . , st−1).
Output: A feasible circuit g satisfying g ∈ C(f).
1: t← 1
2: while true do
3: Compute a probability distribution of st ∈ D by the next token prediction model

pt ← P (st|s1, . . . , st−1)

4: Set St ← {s ∈ D|F (s1, . . . , st−1, s; f) holds}
5: while true do
6: if St ̸= ∅ then
7: st ← argmaxs∈St pt(s)
8: if s1, . . . , st represents a unique circuit then return the corresponding circuit
9: t← t+ 1

10: break
11: else ▷ The backtrack process. If Characteristic 3.3 holds, this branch will never be executed.
12: t← t− 1
13: St ← St\st
14: end if
15: end while
16: end while

a ¬a
1 0
0 1
U U

(a) NOT operator

a ∧ b
a

1 0 U

b
1 1 0 U
0 0 0 0
U U 0 U

(b) AND operator

a ∨ b
a

1 0 U

b
1 1 1 1
0 1 0 U
U 1 U U

(c) OR operator

a ≃ b
a

1 0 U

b
1 1 0 1
0 0 1 1
U 1 1 1

(d) SIMEQ operator

Table 1: The truth tables for NOT, AND, OR and SIMEQ operators in three-valued logic.

Characteristic 3.3 (Backtrack Elimination). St ̸= ∅ is always guaranteed in line 4 of Algorithm 1.

In this way, the next-token prediction process can always proceed forward efficiently, analogous to
typical natural language generation.

For tasks requiring exploration of feasible region for circuits, it is important for a representation of
circuits to cover the widest possible (ideally all) feasible circuits, minimizing the miss of targets due
to the restriction of representation. For example, while we can always generate a strict equivalent
circuit for a Boolean function f via sum-of-product or product-of-sum forms, such forms are too
restricted for any feasible region exploration. Therefore, we have the following desired characteristic:
Characteristic 3.4 (Completeness). For all g ∈ C(f), there exists a sequence s1, . . . , sn that
uniquely represents g.

Now we propose a sequential representation of circuits with cutoff properties, that owns all the
aforementioned characteristics.

First, while circuits are usually built in a bottom-up manner from inputs to outputs, we notice that the
equivalence constraints are applied on each output of the circuit. That is, given the index of output i,
a constraint fi(x) = gi(x),∀x ∈ {1, 0}N is only possible to be validated when the corresponding
circuit output gi has been built. Therefore, we adopt a special top-down order, specifying a circuit
from outputs to inputs, to allow constraint validation throughout the construction process.

Then, to allow indeterminacy in the circuit representation, we include the three-valued logic into the
circuit evaluation process. That is, besides {0, 1} which indicate false and true, there is another truth
value “U” which means unknown. The truth tables of such logic for NOT, AND and OR operators
are shown in Table 1. Additionally, we define a binary operator “SIMEQ” (≃, is similar or equal
to), which is equivalent to the equal operator (=) for {0, 1}, while accommodating U by U ≃ 0 and
U ≃ 1. During the generation process, we relax the feasible region from Equation 2 to

C ′(f) = {g|gi(x) ≃ fi(x) ∀x ∈ {0, 1}N , i = 1, . . . ,M} (7)

so that the occurrence of U in the output will not violate the constraint. For simplicity, here we assume
M = 1 and leave multi-output cases to be discussed later. The generated circuit g is initialized to be

5

U g

(a) The initial circuit.
S0 = {∧,∧},
s0 = ∧.

g
U

U

(b) Step 1.
S1 = {x0,∧,∧},
s1 = ∧.

g

U

U

U

(c) Step 2.
S2 = D,
s2 = x2 .

g

x2

U

U

(d) Step 3.
S3 = {x0, x1, x2,∧,∧},
s3 = x1 .

g

x2

x1

U

(e) Step 4.
S4 = {∧,∧},
s4 = ∧.

g

x2

x1

U

U

(f) Step 5.
S5 = {x0,∧,∧},
s5 = ∧.

g

x2

x1

U

U

U

(g) Step 6.
S6 = D,
s6 = x2 .

g

x2

x1

U
U

(h) Step 7.
S7 = {x0, x1, x2,∧,∧},
s7 = x1 .

g

x2

x1

U

(i) Step 8.
S8 = {x0,∧,∧},
s8 = x0 .

g

x2

x1

x0

(j) The generated cir-
cuit.

Figure 3: An example showing how a strictly feasible circuit can be built with our proposed sequential
representation with cutoff properties. f(x2, x1, x0) is a Boolean function with f(0, 1, 0) = f(1, 1, 1) =
1 and f(x2, x1, x0) = 0 otherwise. D = {x0, x0, x1, x1, x2, x2,∧,∧}, U denotes the wildcard node, the
next wildcard node to be replaced is marked in red. St = {s ∈ D|F (s1, . . . , st−1, s; f) holds}.

a single constant node U , which we call “wildcard node” as it can potentially represent any feasible
circuits. So initially, g(x) ≡ U no matter what the input x is. This is within the relaxed feasible
region in Equation 7 but provides no information about the circuit structure.

Given the initial circuit, the sequential generation process acts as refining the circuit g by recursively
replacing a wildcard node to a specific one st ∈ D, which can be either a new logic gate or a new
primary input. For a new logic gate, all its inputs will be initialized to wildcard nodes that need
further refinement. With the proposed top-down approach, the values of g(x) for all x ∈ {0, 1}M in
Equation 7 can always be evaluated throughout the construction process, following the truth tables
in Table 1. Note that the introduction of three-valued logic also enables short-circuit evaluation
with unknown values. For an AND gate c(x) = a(x) ∧ b(x), if one of the inputs (a(x) or b(x)) is
evaluated to be 0 given specific x, then c(x) = 0 no matter what the other input is evaluated, even if
it is U . The same logic applies for the OR gate when one of the inputs is evaluated to be 1.

Then, the cutoff properties F (s1, . . . , st; f) holds if and only if for all x ∈ {0, 1}M , the output of
the constructed circuit g(t) given input x at time step t is similar or equal to f(x). That is,

g(t)(x) ≃ f(x), ∀x ∈ {0, 1}M (8)

or simply, g(t) ∈ C ′(f).

For the ending criteria, as a wildcard node can potentially be any circuit, only when all the wildcard
nodes are recursively replaced by specific ones, can the sequence uniquely represent a circuit, which
marks the end of the generation process in line 8 of Algorithm 1. For the order of replacement when
multiple wildcard nodes exist, we follow a fixed order that prioritizes those with the largest distance
from the output and the left child of a gate over the right one. For multi-output cases, we generate
the circuit for each output separately, and combine them together via node merging which will be
discussed in the next section.

For the selection of logic gates (vocabulary list) in the sequential representation, we note that the
combination of AND and NOT gates can express all possible truth tables of Boolean functions
(which is termed “functional completeness”), and is also commonly adopted in practical circuit
representation [2]. Therefore, we adopted this setting, with an alteration that we merged the NOT
gate with the AND gate and primary inputs. Instead of assigning the NOT gate an individual token,
each primary inputs and the AND gate has two versions: the original ones (x1, . . . , xN ,∧) and the
inverse ones (x1, . . . , xN ,∧), so the vocabulary list contains 2N + 2 tokens in total3. This allows us
to significantly shorten the sequence with a moderate increase of vocabulary size.

An example of our proposed representation and cutoff properties are shown in Figure 3. We leave the
proof of Characteristic 3.1, 3.2, 3.3 and 3.4 in the appendix.

3.3 From Trees to Directed Acyclic Graphs

In the last section, we proposed a sequential representation of circuits based on recursive replacement
of wildcard nodes in the top-down manner. Such an approach implicitly assumes that a logic gate

3This does not include special tokens such as [EOS] and [PAD] in Transformer models.

6

unfold

merge

DAG Tree(s)

Figure 4: Transition between a DAG and one or more trees. The shown DAG is an abstraction of
Figure 1c in which circles represent AND gates, primary inputs and outputs, solid arrows represent
wires from outputs to inputs, and dashed arrows represent wires with a NOT gate between the input
and the output.

would always have one fan-out4, restricting the generated circuits to be highly hierarchical with tree
structures. However, multi-fanout gates do commonly exist in real-world logic circuits, which shape
circuits as directed acyclic graphs (DAGs).

In this section, we show how we extend our method to generate DAG circuits. We notice that a DAG
can be “unfolded” to one or more trees once we duplicate every node with outdegree larger than
one, so that every node has at most one outgoing edge. For example, the orange node in the left
DAG of Figure 4 is duplicated into two individual nodes, where its two outgoing edges are assigned
respectively. Reversely, one or more trees can also be transformed to a DAG by merging nodes
with structural equivalence. For circuits, such a bidirectional transition will not change the Boolean
function it represents. Therefore, we generate a DAG circuit by firstly generating its unfolded tree
representation, and then merging equivalent nodes in the generated tree representation. In logic circuit
design, different nodes can be not only structurally equivalent but also functionally equivalent [26],
which means that their outputs represent the same Boolean functionality. Functionally equivalent
nodes can thus be merged as a single node even if they have different underlying structures. Our
approach mainly leverages the functional equivalence.

3.4 Neural Encoding of Circuits and Circuit Transformer

While we can deserialize our proposed sequential representation to a DAG circuit via node merging,
we can also serialize a given DAG circuit to our proposed sequential representation via a depth-first
traversal with node duplication. Given a DAG circuit, we start a traversal from each of its primary
outputs, and visit each connected gate in a depth-first, recursive manner. Backtracking occurs when
a primary input is reached. Importantly, such a traversal is memory-less, i.e., visited nodes will
not be labelled during the traversal, thus a node will appear multiple times in the trajectory if its
fan-out is larger than one, corresponding to the node duplication in the last section. When the process
is finished, the traversal trajectory s1, . . . , sn is the sequential representation of the unfolded tree
version of the original DAG circuit. Note that such an unfolding process may lead to long sequences,
especially for nodes with large number of fan-outs. A more compact representation is leaved as future
work.

For Transformer models to process the sequential representation, it is important to provide an efficient
positional encoding for each node to indicate its position in the circuit. In this work, we utilize the
path from the primary output to a given node to indicate the node’s position. To achieve this, we
follow [33] that encodes the path as a stack of one-hot encodings (“10” for the first input and “01”
for the second input). More details are leaved in the appendix.

With all the circuit encoding and generation techniques introduced above, we propose Circuit
Transformer, an end-to-end Transformer model that generates a new and functionally equivalent
circuit of the input one. The Transformer uses an encoder-decoder architecture, and the original
circuit is serialized to our proposed sequential representation, acting as the input of the Transformer
encoder. The Transformer’s decoding process cooperates with the backtrack programming framework
in Algorithm 1 with our proposed cutoff properties in Section 3.2. Given Characteristic 3.3, the
backtrack process in line 11-14 will not be actually executed, so St in line 4 of Algorithm 1 reduces to
a masking layer at the end of the Transformer decoder, filtering invalid tokens by assigning probability
zero to them. Finally, node merging proposed in Section 3.3 is applied to the decoded sequence to
transform the unfolded tree representation to a DAG circuit. The pipeline is shown in Figure 2.

4The fan-out of a gate is the number of inputs driven by the output of the gate.

7

3.5 Equivalent Circuit Generation as a Markov decision process

An important application of equivalent circuit generation is to optimize circuits with respect to certain
objectives. For example, in semiconductor industry, it is of vital importance to reduce the size of a
given circuit measured by the number of logic gates, while the specification of the circuit (i.e., the
Boolean function it represents) keeps equivalent. Under our proposed sequential representation, it can
be achieved by attaching an immediate reward function R(s1, . . . , st, s) to the generation of token
s at step t, so that the sum of the reward function throughout the generation reflects the objective.
In this way, the generation process can be regarded as a deterministic Markov decision process, in
which the state at step t is the generated tokens s1, . . . , st, the set of actions available from the state
is St = {s ∈ D|F (s1, . . . , st, s; f) holds}, the immediate reward is R(s1, . . . , st, s), and the next
state is s1, . . . , st, s with probability 1. The process terminates once s1, . . . , st represents a unique
circuit with all wildcard nodes replaced. Such a formulation owns two key advantages. First, the
feasibility of the generated circuit is guaranteed once the process terminates. No effort is required to
penalize infeasible cases via crafting the reward function. Second, the size of the available action
set is at most 2N + 2, in which N , the number of inputs, is usually moderately small in practice.
Other circuit representations typically assign each logic gate a unique ID to describe their adjacency,
requiring the size of available actions to be proportional to the number of gates, which is usually
significantly larger than N .

For the circuit size minimization problem in Equation 3, the immediate reward function can be
defined as

R(s1, . . . , st, s) = ∆ +

{
−1, s = ∧ or s = ∧
0, otherwise

(9)

in which ∆ reflects the refinement due to equivalent node merging. Given a depth-first replacement
order of wildcard nodes in Section 3.2, the node merging process in Section 3.3 can be done
simultaneously with the generation process, whose detail is leaved in the appendix.

4 Experiments

In this section, we supervisedly train a Circuit Transformer to solve the circuit size minimization
problem in Equation 3, generating equivalent yet more compact forms of input circuits, and con-
duct extensive experiments on both synthetic and real-world datasets to evaluate its feasibility and
optimality.

The details of the Circuit Transformer model are as follows. We employed an encoder-decoder
architecture following [41], each with 12 attention layers. The embedding width and the size of
feedforward layer are set as 512 and 2048 respectively, leading to 88,225,800 total parameters.
The vocabulary size is 20 (8 inputs and the AND gate, with their inverse, plus [EOS] and [PAD]).
Batch size is set to be 128. The maximum length of the input and output sequence is set to be 200.
To evaluate the effectiveness of tree positional encoding (TPE) in Section 3.4, we trained Circuit
Transformers with and without TPE. The maximal depth of tree positional embeddings is set to be 32.
The implementation is based on [49].

We also trained two baseline Transformer models with exactly the same experimental settings, except
employing different sequential representation of circuits as follows:

• Boolean Chain [15]: a representation that is extensively applied in SAT-based optimization
techniques. A chain is initialized by all the primary inputs of the circuit, and each gate is
represented by two prior indices in the chain, indicating the source of its two inputs.

• AIGER [2]: a popular representation of logic circuits with AND and NOT gates. We follow
the tokenization setting in [31], representing an AND gate by three tokens followed by a
special new line token.

To train and evaluate the Circuit Transformer model, we build a large dataset containing 15 million
randomly generated 8-input, 2-output circuits. The supervised signals (i.e., the equivalent circuits
that are optimized in size) are generated by the Resyn2 command in ABC [3], a representative
optimization flow for circuit size minimization. The detail of random circuit generation is leaved in
the appendix. 89% of the data is for training, 1% is for validation and 10% is reserved for testing. All
the Transformer models are trained on the training set sufficiently for 5 epochs.

8

Methods Random circuits IWLS FFWs

Unsuccessful
cases

Average
circuit
size

Unsuccessful
cases

Average
circuit
size

Boolean Chain 5.07% (5.07%) 15.25 11.36% (11.26%) 17.24
Boolean Chain (beam size = 16) 2.16% (2.16%) 14.89 6.34% (6.29%) 17.15
Boolean Chain (beam size = 128) 1.91% (1.91%) 14.87 5.97% (5.94%) 17.15
AIGER 4.32% (4.32%) 15.14 8.35% (7.77%) 17.19
AIGER (beam size = 16) 1.85% (1.85%) 14.87 4.62% (4.37%) 17.12
AIGER (beam size = 128) 1.71% (1.71%) 14.86 4.24% (3.99%) 17.12
Circuit Transformer w/o TPE 2.14% (0%) 15.02 6.63% (0%) 17.33
Circuit Transformer 1.14% (0%) 14.79 4.76% (0%) 17.17
Circuit Transformer (K = 10) 0.20% (0%) 14.02 2.83% (0%) 16.92
Circuit Transformer (K = 100) 0.17% (0%) 13.73 2.63% (0%) 16.73
Resyn2 (ground truth for training) / 14.56 / 16.82

Table 2: Results on 10,240 randomly generated circuits, and 10,240 fanout-free windows randomly
sampled from the IWLS 2023 benchmark. For unsuccessful cases, the percentage in the bracket
corresponds to failures due to equivalence constraint violation. All results of Circuit Transformers
show zero violation of equivalence constraints. K denotes the total number of playouts in Monte-
Carlo tree search. All the models are supervisedly trained on the Resyn2 optimized circuits.

We employ both a synthetic dataset and a real EDA benchmarks to evaluate the performance of the
models:

• Random circuits: 10,240 circuits are randomly sampled from the test set of the aforementioned
randomly generated dataset.

• IWLS FFWs: we transform the IWLS 2023 benchmark [24] into circuits represented by AND
and NOT gates by the script suggested in [25], and extract 1.5 million 8-input, 2-output fanout-
free windows (FFWs) [54]. Then we randomly sample 10,240 circuits from the extracted
FFWs.

The latter is of significance in practice, as sub-circuit optimization acts as the core technique of large
circuit optimization.

To enhance the performance of the Transformer models in comparison, two heuristics search tech-
niques are applied. Beam search is applied for Transformer models on Boolean chain and AIGER
represented circuits. Monte-Carlo tree search is applied for Circuit Transformer to evaluate our
proposed MDP formulation in Section 3.5. The detail is leaved in the appendix.

The results are presented in Table 2. On both synthetic and real datasets, the Circuit Transformer
surpasses two other Transformer models in terms of feasibility (measured by the percentage of
unsuccessful cases) and optimality (measured by the average circuit size). The two baseline models
generate unsuccessful circuits for various reasons, including equivalence constraint violations, cycles
in circuits, or incomplete specifications, with the most common issue being that the generated circuit
is complete and valid but not strictly equivalent to the original. In contrast, the Circuit Transformer’s
exact precision is empirically shown by zero violation of complex equivalence constraints. The only
reason for unsuccessful cases is that wildcard nodes are not fully replaced within the given maximum
sequence length of 200. Regarding heuristic search enhancement, while beam search significantly
improved feasibility, consistent with findings in [31], the issue of non-equivalence remained prevalent.
Conversely, Monte-Carlo tree search in the Circuit Transformer not only substantially reduced
unsuccessful cases but also significantly improved the average circuit size, sometimes producing
circuits more compact than the ground truth with a moderate number of playouts.

5 Conclusion

In this work, we make an important advancement towards achieving precise generative AI for logic
tasks, demonstrating that complex hard-constraint satisfaction is attainable for next-token prediction
models when a proper formulation of the constrained problem is established. Inspired by the backtrack
programming framework, we introduce a novel approach to the fundamental problem of equivalent
circuit generation, enabling next-token prediction models to generate new logic circuits while strictly
adhering to complex equivalence constraints. This methodology has the potential to be extended to
other fundamental constrained problems, making it a promising area for further research.

9

References
[1] UoC Berkeley. Berkeley logic interchange format (blif). Oct Tools Distribution, 2:197–247,

1992.

[2] Armin Biere. The AIGER And-Inverter Graph (AIG) format version 20071012. Techni-
cal Report 07/1, Institute for Formal Models and Verification, Johannes Kepler University,
Altenbergerstr. 69, 4040 Linz, Austria, 2007.

[3] Robert Brayton and Alan Mishchenko. Abc: An academic industrial-strength verification
tool. In Computer Aided Verification, pages 24–40, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg.

[4] D. Chai and A. Kuehlmann. Building a Better Boolean Matcher and Symmetry Detector. In
Proceedings of the Design Automation & Test in Europe Conference, volume 1, pages 1–6,
March 2006. ISSN: 1558-1101.

[5] Ruoyu Cheng, Xianglong Lyu, Yang Li, Junjie Ye, Jianye Hao, and Junchi Yan. The policy-
gradient placement and generative routing neural networks for chip design. Advances in Neural
Information Processing Systems, 35:26350–26362, 2022.

[6] Stéphane d’Ascoli, Samy Bengio, Josh Susskind, and Emmanuel Abbé. Boolformer: Symbolic
Regression of Logic Functions with Transformers, September 2023.

[7] Lu Duan, Yang Zhan, Haoyuan Hu, Yu Gong, Jiangwen Wei, Xiaodong Zhang, and Yinghui
Xu. Efficiently solving the practical vehicle routing problem: A novel joint learning approach.
In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, KDD ’20, page 3054–3063, New York, NY, USA, 2020. Association for
Computing Machinery.

[8] Antoine Grosnit, Cedric Malherbe, Rasul Tutunov, Xingchen Wan, Jun Wang, and Haitham Bou
Ammar. Boils: Bayesian optimisation for logic synthesis. In 2022 Design, Automation & Test
in Europe Conference & Exhibition (DATE), pages 1193–1196, 2022.

[9] Wenxuan Guo, Hui-Ling Zhen, Xijun Li, Wanqian Luo, Mingxuan Yuan, Yaohui Jin, and Junchi
Yan. Machine Learning Methods in Solving the Boolean Satisfiability Problem. Machine
Intelligence Research, 20(5):640–655, October 2023.

[10] Winston Haaswijk, Mathias Soeken, Alan Mishchenko, and Giovanni De Micheli. SAT-Based
Exact Synthesis: Encodings, Topology Families, and Parallelism. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 39(4):871–884, April 2020.

[11] John M. Hitchcock and A. Pavan. On the NP-Completeness of the Minimum Circuit Size
Problem. 2015.

[12] Abdelrahman Hosny, Soheil Hashemi, Mohamed Shalan, and Sherief Reda. Drills: Deep rein-
forcement learning for logic synthesis. In 2020 25th Asia and South Pacific Design Automation
Conference (ASP-DAC), pages 581–586, 2020.

[13] Guyue Huang, Jingbo Hu, Yifan He, Jialong Liu, Mingyuan Ma, Zhaoyang Shen, Juejian
Wu, Yuanfan Xu, Hengrui Zhang, Kai Zhong, Xuefei Ning, Yuzhe Ma, Haoyu Yang, Bei Yu,
Huazhong Yang, and Yu Wang. Machine learning for electronic design automation: A survey.
ACM Trans. Des. Autom. Electron. Syst., 26(5), jun 2021.

[14] Valentine Kabanets and Jin-Yi Cai. Circuit minimization problem. In Proceedings of the
thirty-second annual ACM symposium on Theory of computing, pages 73–79, Portland Oregon
USA, May 2000. ACM.

[15] Donald E Knuth. The Art of Computer Programming, Volume 4, Fascicle 6: Satisfiability.
Addison-Wesley Professional, 2015.

[16] Donald E Knuth. The Art of Computer Programming, Volume 4, Fascicle 5: Mathematical Pre-
liminaries Redux; Introduction to Backtracking; Dancing Links. Addison-Wesley Professional,
2020.

10

[17] Arist Kojevnikov, Alexander S. Kulikov, and Grigory Yaroslavtsev. Finding Efficient Circuits
Using SAT-Solvers. In Oliver Kullmann, editor, Theory and Applications of Satisfiability Testing
- SAT 2009, pages 32–44, Berlin, Heidelberg, 2009. Springer.

[18] Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations, 2019.

[19] Min Li, Sadaf Khan, Zhengyuan Shi, Naixing Wang, Huang Yu, and Qiang Xu. Deepgate:
Learning neural representations of logic gates. In Proceedings of the 59th ACM/IEEE Design
Automation Conference, pages 667–672, 2022.

[20] Xing Li, Lei Chen, Jiantang Zhang, Shuang Wen, Weihua Sheng, Yu Huang, and Mingxuan
Yuan. Effisyn: Efficient logic synthesis with dynamic scoring and pruning. In 2023 IEEE/ACM
International Conference on Computer Aided Design (ICCAD), pages 1–9. IEEE, 2023.

[21] Mingjie Liu, Nathaniel Pinckney, Brucek Khailany, and Haoxing Ren. Verilogeval: Evaluating
large language models for verilog code generation. In 2023 IEEE/ACM International Conference
on Computer Aided Design (ICCAD), pages 1–8. IEEE, 2023.

[22] Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori, Shen
Wang, Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, et al. A graph placement
methodology for fast chip design. Nature, 594(7862):207–212, 2021.

[23] A. Mishchenko, S. Chatterjee, and R. Brayton. DAG-aware AIG rewriting: a fresh look at
combinational logic synthesis. In 2006 43rd ACM/IEEE Design Automation Conference, pages
532–535, July 2006. ISSN: 0738-100X.

[24] Alan Mishchenko. alanminko/iwls2023-ls-contest: Problems and Results of IWLS 2023
Programming Contest, 2023.

[25] Alan Mishchenko and Satrajit Chatterjee. IWLS 2022 Programming Contest, 2022.

[26] Alan Mishchenko, Satrajit Chatterjee, Roland Jiang, and Robert K. Brayton. FRAIGs: A
unifying representation for logic synthesis and verification. Technical report, ERL Technical
Report, 2005.

[27] MohammadReza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takac. Reinforce-
ment Learning for Solving the Vehicle Routing Problem. In Advances in Neural Information
Processing Systems, volume 31. Curran Associates, Inc., 2018.

[28] Walter Lau Neto, Matheus T Moreira, Yingjie Li, Luca Amarù, Cunxi Yu, and Pierre-Emmanuel
Gaillardon. Slap: A supervised learning approach for priority cuts technology mapping. In
2021 58th ACM/IEEE Design Automation Conference (DAC), pages 859–864. IEEE, 2021.

[29] Zehua Pei, Hui-Ling Zhen, Mingxuan Yuan, Yu Huang, and Bei Yu. Betterv: Controlled verilog
generation with discriminative guidance. arXiv preprint arXiv:2402.03375, 2024.

[30] Frederik Schmitt, Matthias Cosler, and Bernd Finkbeiner. Neural circuit synthesis with pre-
trained language models. In First International Workshop on Deep Learning-aided Verification,
2023.

[31] Frederik Schmitt, Christopher Hahn, Markus N Rabe, and Bernd Finkbeiner. Neural circuit
synthesis from specification patterns. In Advances in Neural Information Processing Systems,
volume 34, pages 15408–15420. Curran Associates, Inc., 2021.

[32] Daniel Selsam and Nikolaj Bjørner. Guiding High-Performance SAT Solvers with Unsat-Core
Predictions. In Mikoláš Janota and Inês Lynce, editors, Theory and Applications of Satisfiability
Testing – SAT 2019, pages 336–353, Cham, 2019. Springer International Publishing.

[33] Vighnesh Shiv and Chris Quirk. Novel positional encodings to enable tree-based transformers.
In Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019.

11

[34] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of
go without human knowledge. nature, 550(7676):354–359, 2017.

[35] Michael Sipser. Introduction to the theory of computation. Cengage Learning, Australia Brazil
Japan Korea Mexiko Singapore Spain United Kingdom United States, third edition, international
edition edition, 2013.

[36] Kevin Skahill. VHDL for programmable logic. Addison-Wesley Longman Publishing Co., Inc.,
1996.

[37] Mathias Soeken, Winston Haaswijk, Eleonora Testa, Alan Mishchenko, Luca G. Amaru,
Robert K. Brayton, and Giovanni De Micheli. Practical exact synthesis. In 2018 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pages 309–314, Dresden,
Germany, March 2018. IEEE.

[38] Shailja Thakur, Baleegh Ahmad, Hammond Pearce, Benjamin Tan, Brendan Dolan-Gavitt,
Ramesh Karri, and Siddharth Garg. Verigen: A large language model for verilog code generation.
ACM Transactions on Design Automation of Electronic Systems, 29(3):1–31, 2024.

[39] Donald Thomas and Philip Moorby. The Verilog® hardware description language. Springer
Science & Business Media, 2008.

[40] Trieu H. Trinh, Yuhuai Wu, Quoc V. Le, He He, and Thang Luong. Solving olympiad geometry
without human demonstrations. Nature, 625(7995):476–482, January 2024. Number: 7995
Publisher: Nature Publishing Group.

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

[42] Heribert Vollmer. Introduction to circuit complexity: a uniform approach. Springer Science &
Business Media, 1999.

[43] Laung-Terng Wang, Yao-Wen Chang, and Kwang-Ting Cheng. Electronic design automation:
synthesis, verification, and test. The Morgan Kaufmann series in systems on silicon. Morgan
Kaufmann/Elsevier, Amsterdam Boston, 2009.

[44] Wenxi Wang, Yang Hu, Mohit Tiwari, Sarfraz Khurshid, Kenneth McMillan, and Risto Miikku-
lainen. NeuroBack: Improving CDCL SAT Solving using Graph Neural Networks, November
2023. arXiv:2110.14053 [cs].

[45] Ziyi Wang, Chen Bai, Zhuolun He, Guangliang Zhang, Qiang Xu, Tsung-Yi Ho, Bei Yu, and
Yu Huang. Functionality matters in netlist representation learning. In Proceedings of the 59th
ACM/IEEE Design Automation Conference, pages 61–66, 2022.

[46] Chenghao Yang, Yinshui Xia, Zhufei Chu, and Xiaojing Zha. Logic synthesis optimization
sequence tuning using rl-based lstm and graph isomorphism network. IEEE Transactions on
Circuits and Systems II: Express Briefs, 69(8):3600–3604, 2022.

[47] Shuwen Yang, Zhihao Yang, Dong Li, Yingxueff Zhang, Zhanguang Zhang, Guojie Song, and
Jianye Hao. Versatile multi-stage graph neural network for circuit representation. Advances in
Neural Information Processing Systems, 35:20313–20324, 2022.

[48] Cunxi Yu, Houping Xiao, and Giovanni De Micheli. Developing synthesis flows without human
knowledge. In Proceedings of the 55th Annual Design Automation Conference, DAC ’18, New
York, NY, USA, 2018. Association for Computing Machinery.

[49] Hongkun Yu, Chen Chen, Xianzhi Du, Yeqing Li, Abdullah Rashwan, Le Hou, Pengchong
Jin, Fan Yang, Frederick Liu, Jaeyoun Kim, and Jing Li. TensorFlow Model Garden. https:
//github.com/tensorflow/models, 2020.

[50] Guo Zhang, Hao He, and Dina Katabi. Circuit-gnn: Graph neural networks for distributed
circuit design. In International conference on machine learning, pages 7364–7373. PMLR,
2019.

12

https://github.com/tensorflow/models
https://github.com/tensorflow/models

[51] Wenjie Zhang, Zeyu Sun, Qihao Zhu, Ge Li, Shaowei Cai, Yingfei Xiong, and Lu Zhang.
NLocalSAT: Boosting Local Search with Solution Prediction. In Proceedings of the Twenty-
Ninth International Joint Conference on Artificial Intelligence, pages 1177–1183, Yokohama,
Japan, July 2020. International Joint Conferences on Artificial Intelligence Organization.

[52] Keren Zhu, Mingjie Liu, Hao Chen, Zheng Zhao, and David Z. Pan. Exploring logic optimiza-
tions with reinforcement learning and graph convolutional network. In 2020 ACM/IEEE 2nd
Workshop on Machine Learning for CAD (MLCAD), pages 145–150, 2020.

[53] Xuliang Zhu, Ruofei Tang, Lei Chen, Xing Li, Xin Huang, Mingxuan Yuan, Weihua Sheng,
and Jianliang Xu. A database dependent framework for k-input maximum fanout-free window
rewriting. In 2023 60th ACM/IEEE Design Automation Conference (DAC), pages 1–6. IEEE,
2023.

[54] Xuliang Zhu, Ruofei Tang, Lei Chen, Xing Li, Xin Huang, Mingxuan Yuan, Weihua Sheng,
and Jianliang Xu. A database dependent framework for k-input maximum fanout-free window
rewriting. In 2023 60th ACM/IEEE Design Automation Conference (DAC), pages 1–6, 2023.

A Appendix / supplemental material

A.1 Detail of Backtrack Programming Framework

The basic backtrack algorithm is as follows, extracted from [16]:

Given domain D and properties F (s1, . . . , st), this algorithm visites all sequence s1, s2, . . . , sn that
satisfy F (s1, . . . , sn):

Step 1 [Initialize] Set t← 1, and initialize the data structures needed later.
Step 2 [Enter level t] (Now F (s1, . . . , st−1) holds.) If t > n, visit s1, . . . , sn and go to Step 5,

Otherwise set st ← minD, the smallest element of D.
Step 3 [Try st] If F (s1, . . . , st) holds, update the data structures to facilitate testing

F (s1, . . . , st, st+1), set t← t+ 1, and go to Step 2.
Step 4 [Try again] If st ̸= maxD, set st to the next larger element of D and return to Step 3.
Step 5 [Backtrack] Set t ← t − 1. If t > 0, downdate the data structures by undoing the changes

recently made in Step 3, and return to Step 4. (Otherwise stop.)

The following example shows how cutoff properties can be invented for a specific problem to be
solved by backtrack programming. To generate all permutations s1, . . . , sn of {1, . . . , n} in which
all numbers should appear exactly once, we can set si ∈ {1, . . . , n}, i = 1, . . . , n, and the cutoff
property F (s1, . . . , st) holds at step t if and only if si ̸= sj ,∀1 ≤ i < j ≤ t. In such a way,
Characteristic 3.1 is obvious, and Characteristic 3.2 also holds, as we only need to test whether
si ̸= st holds for all 1 ≤ i < t given F (s1, . . . , st−1) holds.

We refer to Section 7.2.2 of [16] for more details about backtrack programming.

A.2 Proof of Characteristics

In this section, we demonstrate that our proposed sequential representation owns Characteristic 3.1,
3.2, 3.3 and 3.4.

Characteristic 3.1: When F (s1, . . . , st+1; f) is true, the transition from s1, . . . , st+1 to s1, . . . , st
corresponds to reversely replacing a specific node st+1 with a wildcard node. such a replacement
will never break the feasibility, because (1) a wildcard node only represents feasible circuits; (2) the
wildcard node at least have a feasible choice to be set as st+1 as s1, . . . , st+1 is feasible.

Characteristic 3.2: During the generation from step 1 to step t − 1, a caching mechanism can be
employed to cache the truth table of the constructed nodes. Therefore, when F (s1, . . . , st−1; f)
holds and F (s1, . . . , st−1, st; f) needs to be evaluate, we simply traverse the generated circuit in a
bottom-up manner, from the current wildcard node to be replaced to the root, to evaluate g(t)(x) for
all x ∈ {0, 1}N with time complexity of O(2N · d) in which d is the depth of the node. More details
about the caching mechanism can be found in check_conflict_batch_new in utils.py.

13

Algorithm 2 Circuit generation with immediate equivalent node merging
Input: The Boolean function f that the generated circuit should be equivalent to. Next token prediction model

P (st|s1, . . . , st−1).
Output: A feasible circuit g satisfying g ∈ C(f).
1: Initialize path as an empty stack of gates, POs as an empty list.
2: Initialize G = ∅ as a set of non-isomorphic gates
3: for t = 1, 2, 3, . . . do
4: Compute a probability distribution of st ∈ D by the next token prediction model

pt ← P (st|s1, . . . , st−1)

5: Set St ← {s ∈ D|F (s1, . . . , st−1, s; f) holds} ▷ St ̸= ∅ is guaranteed by Characteristic 3.3
6: st ← argmaxs∈St pt(s)
7: Initialize st.input1← U, st.input2← U if st is a gate.
8: if path is empty then ▷ the output of st is the primary output of the circuit
9: Append st to POs and push st to path

10: else ▷ st should be the input of the last gate in path
11: s← path.peek() ▷ get the last gate added to path
12: if s.input1 = U then s.input1← st else s.input2← st ▷ replace a wildcard node in st to s
13: if st is a gate then
14: path.push(st)
15: else ▷ st is an input node in x1, x1, . . . , xN , xN . Pop fully constructed gates from path
16: while s.input1 ̸= U and s.input2 ̸= U do
17: if s ∈ G then ▷ Compute the truth table of s to check functional equivalence
18: Update path and POs to replace s with the functional equivalent one in G
19: else
20: Add s to G
21: end if
22: s← path.pop()
23: end while
24: end if
25: end if
26: end for
27: Return the circuit with POs as POs

Characteristic 3.3: Note that the AND gate ∧ and the NAND gate ∧ is always in St in our sequential
representation, as replacing a wildcard node to an AND or NAND gate with two wildcard nodes will
never break the feasibility.

Characteristic 3.4: For all g ∈ C(f), the sequence s1, . . . , sn that represents g is demonstrated in
Section 3.4.

A.3 Demonstration of The Tree Positional Encoding

For example, in Figure 2, the position of the second node in the sequence, i.e., the uppermost AND
gate connecting x1 and x2, can be represented as e2 = [10] (this gate’s output is the first input of the
rightmost AND gate, so “10” is pushed in the encoding stack of the rightmost AND gate, which is
empty), and the position of the fourth node x2 in the sequence can be represented as e4 = [01; e2] =
[0110] (push “01” in e2 as x2 is the second node’s second input) and e6 = [10; e5] = [1001] when x2

is secondly visited as the fifth node’s first input.

For circuits with multiple primary outputs (M > 1), we initialize the encoding stack of each primary
output with a unique one-hot encoding, as if there is a virtual root node of M children, and each
primary output corresponds to one of the children.

A.4 Immediate Equivalent Node Merging and Functional Equivalence Checking

With a depth-first replacement order, we can follow Algorithm 2 to merge equivalent nodes during
the generation process. For functional equivalence checking of two nodes p and q, we check whether
p(x) = q(x),∀x ∈ {0, 1}N by iterating all x. If there is an x such that p(x) ̸= q(x), then p and q
are not functionally equivalent.

14

Algorithm 3 Circuit Generation with Monte-Carlo Tree Search
Input: The Boolean function f that the generated circuit should be equivalent to. Next token prediction model
P (st|s1, . . . , st−1). Immediate reward function R(s1, . . . , st). Number of playouts K.

Output: A feasible circuit g satisfying g ∈ C(f).
procedure PUCT(an MCTS node x)

for a in x’s all child nodes do
sa ← a.total_value

a.visited + a.prob
√

x.visited
1+a.visited

end for
Return argmaxa sa

end procedure
procedure MCTS(P,R,K) ▷ See [34] for details

Create a root MCTS node r
for i = 1, 2, . . . ,K do

(Selection) Starting from r, iteratively selects a child node via PUCT algorithm until reaching a leaf
node l.

(Expansion) Evaluate l via P (st|s1, . . . , st−1) (i.e., create all child nodes a for l, and assign a.prob
for each child via P (st|s1, . . . , st−1)), and select a valid child node (cutoff properties F holds) via PUCT.

(Simulation) Run the generation process from the selected node via Algorithm 2 until a complete
circuit is generated or the maximum #(iter) is reached, and get the cumulative reward v

(Backpropagation) Update the “visited” and “total_value” attributes of the MCTS nodes from p to r in
a backward pass with v.

end for
Return The path from r to the leaf node with maximal “total_value” attributes.

end procedure
Get optimized sequence s1, . . . , st from MCTS(P,R,K).
Given s1, . . . , st, continue the generation process in Algorithm 2 and return the generated circuit.

Algorithm 4 Random generation of a k-input, l-output circuit
Input: Number of input k, number of output l, number of steps T .
Output: A randomly generated circuit with k inputs and l outputs.
C ← [I0, I1, . . . , Ik−1]
for i = 1, 2, . . . ,Mstep do

Create an AND node si
Randomly sample two nodes c0, c1 ∈ C without replacement
Set the first input of si as c0 or c0 randomly
Set the second input of si as c1 or c1 randomly
Append si to the end of C

end for
Return the circuit with I0, I1, . . . , Ik−1 as primary inputs and aT−l+1, aM−l+2, . . . , aT as primary outputs.

A.5 Monte-Carlo Tree Search for Circuit Size Minimization

The search process is sketched in Algorithm 3.

A.6 Dataset Generation

The process to generate a random circuit is shown in Algorithm 4. We restrict that the length of the
encoded sequence for each circuit should fit all the three sequential representations with a maximal
length of 200, and all the 8 inputs should appear in the circuit. Each circuit has a unique structure,
which is realized by a canonicalization technique [4].

A.7 Experiments Compute Resources

All the experiments are conducted on a workstation with the following specification:

• CPU: AMD Ryzen™ 9 7950X Desktop Processor (16 cores, 32 threads)
• Memory: 192GB (48GB × 4) DDR5 5200MHz
• GPU: NVIDIA GeForce RTX 4090 × 2

Each Transformer model in the experiments is trained on a single GPU with 75 hours.

15

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: There are two main limitations for the proposed approach: (1) the sequential
representation can be long when there are nodes with large fan-outs, discussed in Section 3.4;
(2) it is still possible for Circuit Transformer to be unsuccessful in generating circuits due to
the output length limit, which is discussed in section 4.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used
by reviewers as grounds for rejection, a worse outcome might be that reviewers
discover limitations that aren’t acknowledged in the paper. The authors should use
their best judgment and recognize that individual actions in favor of transparency play
an important role in developing norms that preserve the integrity of the community.
Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
Answer: [Yes]
Justification: A proof is provided in Section A.2.
Guidelines:

• The answer NA means that the paper does not include theoretical results.

16

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Adequate implementation details and pseudocode are provided in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should
describe the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there
should either be a way to access this model for reproducing the results or a way
to reproduce the model (e.g., with an open-source dataset or instructions for
how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for repro-
ducibility. In the case of closed-source models, it may be that access to the
model is limited in some way (e.g., to registered users), but it should be possible
for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [Yes]
Justification: See the supplemental material for the data and code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See section 4 and Section A.6 for the details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The evaluation is conducted on two large datasets, each with more than 10
thousand circuits. The large size mitigates the statistical error, and repeated evaluation with
re-sampling of datasets could be too time consuming.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [Yes]

18

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Justification: See Section A.7.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?
Answer: [NA]
Justification: No significant positive or negative societal impact is identified by the authors.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact
specific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No data or models that have a high risk for misuse are identified by the authors
in this work.
Guidelines:

• The answer NA means that the paper poses no such risks.

19

https://neurips.cc/public/EthicsGuidelines

• Released models that have a high risk for misuse or dual-use should be released
with necessary safeguards to allow for controlled use of the model, for example by
requiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?
Answer: [Yes]
Justification: The main third-party assets used in this paper, TensorFlow Models (Apache 2.0
License) and IWLS 2023 Benchmark (No license information) are cited in section 4.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well
as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

20

paperswithcode.com/datasets

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution)
were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

21

	Introduction
	Related Work
	Methods
	Equivalent Circuit Generation with Backtrack Programming
	A Sequential Representation of Circuits with Cutoff Properties
	From Trees to Directed Acyclic Graphs
	Neural Encoding of Circuits and Circuit Transformer
	Equivalent Circuit Generation as a Markov decision process

	Experiments
	Conclusion
	Appendix / supplemental material
	Detail of Backtrack Programming Framework
	Proof of Characteristics
	Demonstration of The Tree Positional Encoding
	Immediate Equivalent Node Merging and Functional Equivalence Checking
	Monte-Carlo Tree Search for Circuit Size Minimization
	Dataset Generation
	Experiments Compute Resources

