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Problem Setting

Implementing Boolean functions with logic circuits

(A fundamental problem in digital design!)

A Boolean function 𝑦1, 𝑦0 = 𝑓 𝑥3, 𝑥2, 𝑥1, 𝑥0

in which 𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑦0, 𝑦1 ∈ 0,1

(represented by a truth table, which lists the value of 

(𝑦1, 𝑦0) for all 16 possible inputs)

A logic circuit with 7 AND (NAND) gates

that exactly implements 𝑓



The Challenge: 
Preserving Logical Equivalence

Boolean 

function 𝑓

Logic 

circuit 𝑔

Outputs match for all 16 possible inputs Outputs not exactly match

Must be exactly equivalent 

(i.e., without a single bit of error!)
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(i.e., without a single bit of error!)
Question: Can generative neural models directly generate strictly equivalent circuits?

Typical answer: No. 

Previous AI approaches: strengthening traditional symbolic methods.



Motivation: 
Stepwise decomposition 
of a property
Typical Gen AI models (e.g., Transformer) are 
step-by-step sequence generators.

If we want to generate a sequence 
𝑠1, 𝑠2, … , 𝑠𝑁 with certain property 𝐹(𝑠1, … , 𝑠𝑁)
strictly holds, we can decompose 𝐹 as 𝑁
“cutoff properties”:

• 𝐹 𝑠1

• 𝐹 𝑠1, 𝑠2

• 𝐹 𝑠1, 𝑠2, 𝑠3

• …
• 𝐹(𝑠1, 𝑠2, … , 𝑠𝑁)

Step 1: 𝐹 𝑑1 holds

Queen at d1 will not attack each other

Easy to check

𝐹 𝑑1, 𝑎2 , 𝐹 𝑑1, 𝑏2 , 𝐹 𝑑1, 𝑓2 , 𝐹 𝑑1, 𝑔2 , 𝐹(𝑑1, ℎ2) hold
(valid choices 𝑆1 = {𝑎2, 𝑏2, 𝑓2, 𝑔2, ℎ2})

Choose 𝑏2 ∈ 𝑆1

Step 2: 𝐹 𝑑1, 𝑏2 holds

Queens at d1, b2 will not attack each other

Easy to check

𝐹 𝑑1, 𝑏2, 𝑒3 , 𝐹 𝑑1, 𝑏2, 𝑔3 , 𝐹 𝑑1, 𝑏2, ℎ3  hold
(valid choices 𝑆2 = {𝑒3, 𝑔3, ℎ3})

Choose ℎ3 ∈ 𝑆2

Step 3: 𝐹 𝑑1, 𝑏2, ℎ3 holds

Queens at d1, b2, h3 will not attack each 

other

Easy to check

𝐹 𝑑1, 𝑏2, ℎ3, 𝑐4 , 𝐹 𝑑1, 𝑏2, ℎ3, 𝑒4 , 𝐹 𝑑1, 𝑏2, ℎ3, 𝑓4  hold
(valid choices 𝑆3 = {𝑐4, 𝑒4, 𝑓4})

…

Example: the 8-queen problem

Desired property: all the 8 queens do not attack each other

𝐹 𝑎, 𝑏, 𝑐, … : queens at a, b, c, … do not attack each other

Step-by-step “partial 

feasible” construction 

towards a full 

feasible solution

In this work, similar to the 8-queen problem, we 

incrementally construct a logic circuit with “cutoff 

properties” that preserve equivalence

hold

hold

hold

hold



A Sequential Representation of 
Circuits with “Cutoff Properties”

• Construct from outputs to inputs to 
allow equivalence validation 
throughout the construction process.

• Initialize a circuit by a wildcard node 
(U)

• In each step, refine the circuit by 
replacing a wildcard node with a 
new gate / input
• All the inputs of a new gate will be 

initialized to wildcard nodes

• When multiple wildcard node exist, 
follow a fixed order to replace them
• Prioritizes those with the largest 

distance from the output

• Prioritizes the left child of a gate over 

the right one



Computation of Valid Moves 𝑺𝒕

• Attempt to replace 𝑈 by 
each possible input / gate

• Compute the output of the 
current circuit

• If no equivalence conflict 
occurs, then add it to 𝑆𝑡
• U (unknown) will not conflict 

with any output

• This process can be done 
efficiently with cache and matrix 
operation

𝒙𝟐 𝒙𝟏 𝒙𝟎 𝒇
The value of 𝒈′ when 𝑼 is replaced by

𝒙𝟎 𝒙𝟎 𝒙𝟏 𝒙𝟏 𝒙𝟐 𝒙𝟐 ∧ ഥ∧

0 0 0 0 0 U 0 U 0 U U U

0 0 1 1 U 0 0 U 0 U U U

0 1 0 0 0 U U 0 0 U U U

0 1 1 0 U 0 U 0 0 U U U

1 0 0 0 0 U 0 U U 0 U U

1 0 1 0 U 0 0 U U 0 U U

1 1 0 0 0 U U 0 U 0 U U

1 1 1 1 U 0 U 0 U 0 U U

𝑈
𝑔′

𝑈

Replace 𝑈 with each possible 

input / gate to see whether any 

equivalence conflict occurs

𝑆𝑡 = {𝑥0,∧,ഥ∧}



The Circuit Transformer

• The Boolean function is 
encoded by the Transformer 
encoder

• A masking layer is added 
before the softmax layer of 
the Transformer decoder

• Only allows tokens in valid 

move 𝑆𝑡 to have positive 

possibilities

The Training Stage The Inference Stage



Experiments

• We trained a Circuit 
Transformer with 88M 
parameters on 15M random 
generated circuits
• Circuit size: 8-input, 2-output 

(can specify 1.34 ⋅ 10154 

different circuits)

• Task: generate equivalent yet 
more compact forms of input 
circuits

• Results

• Zero violation of 

equivalence constraints

• Optimization performance 

close to ground truth (even 

better with MCTS enabled)

In distribution Out of distribution

Zero violation of equivalence constraintsBetter performance with 

MCTS enabled



Thank you!

GitHub: https://github.com/snowkylin/circuit-transformer

Online Demo: https://huggingface.co/spaces/snowkylin/circuit-transformer-demo 
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