
Circuit Transformer: A Transformer
That Preserves Logical Equivalence

Xihan Li1, Xing Li2, Lei Chen2, Xing Zhang2, Mingxuan Yuan2 and Jun Wang1

1. Department of Computer Science, University College London

2. Huawei Noah’s Ark Lab, Hong Kong, China

Speaker: Xihan Li (xihan.li@cs.ucl.ac.uk)

The 13th International Conference on Learning Representations (ICLR 2025)

Problem Setting

Implementing Boolean functions with logic circuits

(A fundamental problem in digital design!)

A Boolean function 𝑦1, 𝑦0 = 𝑓 𝑥3, 𝑥2, 𝑥1, 𝑥0

in which 𝑥0, 𝑥1, 𝑥2, 𝑥3, 𝑦0, 𝑦1 ∈ 0,1

(represented by a truth table, which lists the value of

(𝑦1, 𝑦0) for all 16 possible inputs)

A logic circuit with 7 AND (NAND) gates

that exactly implements 𝑓

The Challenge:
Preserving Logical Equivalence

Boolean

function 𝑓

Logic

circuit 𝑔

Outputs match for all 16 possible inputs Outputs not exactly match

Must be exactly equivalent

(i.e., without a single bit of error!)

The Challenge:
Preserving Logical Equivalence

Boolean

function 𝑓

Logic

circuit 𝑔

Outputs match for all 16 possible inputs Outputs not exactly match

Must be exactly equivalent

(i.e., without a single bit of error!)
Question: Can generative neural models directly generate strictly equivalent circuits?

Typical answer: No.

Previous AI approaches: strengthening traditional symbolic methods.

Motivation:
Stepwise decomposition
of a property
Typical Gen AI models (e.g., Transformer) are
step-by-step sequence generators.

If we want to generate a sequence
𝑠1, 𝑠2, … , 𝑠𝑁 with certain property 𝐹(𝑠1, … , 𝑠𝑁)
strictly holds, we can decompose 𝐹 as 𝑁
“cutoff properties”:

• 𝐹 𝑠1

• 𝐹 𝑠1, 𝑠2

• 𝐹 𝑠1, 𝑠2, 𝑠3

• …
• 𝐹(𝑠1, 𝑠2, … , 𝑠𝑁)

Step 1: 𝐹 𝑑1 holds

Queen at d1 will not attack each other

Easy to check

𝐹 𝑑1, 𝑎2 , 𝐹 𝑑1, 𝑏2 , 𝐹 𝑑1, 𝑓2 , 𝐹 𝑑1, 𝑔2 , 𝐹(𝑑1, ℎ2) hold
(valid choices 𝑆1 = {𝑎2, 𝑏2, 𝑓2, 𝑔2, ℎ2})

Choose 𝑏2 ∈ 𝑆1

Step 2: 𝐹 𝑑1, 𝑏2 holds

Queens at d1, b2 will not attack each other

Easy to check

𝐹 𝑑1, 𝑏2, 𝑒3 , 𝐹 𝑑1, 𝑏2, 𝑔3 , 𝐹 𝑑1, 𝑏2, ℎ3 hold
(valid choices 𝑆2 = {𝑒3, 𝑔3, ℎ3})

Choose ℎ3 ∈ 𝑆2

Step 3: 𝐹 𝑑1, 𝑏2, ℎ3 holds

Queens at d1, b2, h3 will not attack each

other

Easy to check

𝐹 𝑑1, 𝑏2, ℎ3, 𝑐4 , 𝐹 𝑑1, 𝑏2, ℎ3, 𝑒4 , 𝐹 𝑑1, 𝑏2, ℎ3, 𝑓4 hold
(valid choices 𝑆3 = {𝑐4, 𝑒4, 𝑓4})

…

Example: the 8-queen problem

Desired property: all the 8 queens do not attack each other

𝐹 𝑎, 𝑏, 𝑐, … : queens at a, b, c, … do not attack each other

Step-by-step “partial

feasible” construction

towards a full

feasible solution

In this work, similar to the 8-queen problem, we

incrementally construct a logic circuit with “cutoff

properties” that preserve equivalence

hold

hold

hold

hold

A Sequential Representation of
Circuits with “Cutoff Properties”

• Construct from outputs to inputs to
allow equivalence validation
throughout the construction process.

• Initialize a circuit by a wildcard node
(U)

• In each step, refine the circuit by
replacing a wildcard node with a
new gate / input
• All the inputs of a new gate will be

initialized to wildcard nodes

• When multiple wildcard node exist,
follow a fixed order to replace them
• Prioritizes those with the largest

distance from the output

• Prioritizes the left child of a gate over

the right one

Computation of Valid Moves 𝑺𝒕

• Attempt to replace 𝑈 by
each possible input / gate

• Compute the output of the
current circuit

• If no equivalence conflict
occurs, then add it to 𝑆𝑡
• U (unknown) will not conflict

with any output

• This process can be done
efficiently with cache and matrix
operation

𝒙𝟐 𝒙𝟏 𝒙𝟎 𝒇
The value of 𝒈′ when 𝑼 is replaced by

𝒙𝟎 𝒙𝟎 𝒙𝟏 𝒙𝟏 𝒙𝟐 𝒙𝟐 ∧ ഥ∧

0 0 0 0 0 U 0 U 0 U U U

0 0 1 1 U 0 0 U 0 U U U

0 1 0 0 0 U U 0 0 U U U

0 1 1 0 U 0 U 0 0 U U U

1 0 0 0 0 U 0 U U 0 U U

1 0 1 0 U 0 0 U U 0 U U

1 1 0 0 0 U U 0 U 0 U U

1 1 1 1 U 0 U 0 U 0 U U

𝑈
𝑔′

𝑈

Replace 𝑈 with each possible

input / gate to see whether any

equivalence conflict occurs

𝑆𝑡 = {𝑥0,∧,ഥ∧}

The Circuit Transformer

• The Boolean function is
encoded by the Transformer
encoder

• A masking layer is added
before the softmax layer of
the Transformer decoder

• Only allows tokens in valid

move 𝑆𝑡 to have positive

possibilities

The Training Stage The Inference Stage

Experiments

• We trained a Circuit
Transformer with 88M
parameters on 15M random
generated circuits
• Circuit size: 8-input, 2-output

(can specify 1.34 ⋅ 10154

different circuits)

• Task: generate equivalent yet
more compact forms of input
circuits

• Results

• Zero violation of

equivalence constraints

• Optimization performance

close to ground truth (even

better with MCTS enabled)

In distribution Out of distribution

Zero violation of equivalence constraintsBetter performance with

MCTS enabled

Thank you!

GitHub: https://github.com/snowkylin/circuit-transformer

Online Demo: https://huggingface.co/spaces/snowkylin/circuit-transformer-demo

Xihan Li

Department of Computer Science, University College London

xihan.li@cs.ucl.ac.uk

https://snowkylin.github.io

https://github.com/snowkylin/circuit-transformer
https://huggingface.co/spaces/snowkylin/circuit-transformer-demo
mailto:xihan.li@cs.ucl.ac.uk
https://snowkylin.github.io/

	幻灯片 1: Circuit Transformer: A Transformer That Preserves Logical Equivalence
	幻灯片 2: Problem Setting
	幻灯片 3: The Challenge: Preserving Logical Equivalence
	幻灯片 4: The Challenge: Preserving Logical Equivalence
	幻灯片 5: Motivation: Stepwise decomposition of a property
	幻灯片 6: A Sequential Representation of Circuits with “Cutoff Properties”
	幻灯片 7: Computation of Valid Moves 加粗斜体 大写 S 下标 加粗斜体 t
	幻灯片 8: The Circuit Transformer
	幻灯片 9: Experiments
	幻灯片 10: Thank you!

