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Matrix Game

• A set of players
• e.g., you (row player, player 1) and your opponent (column player, player 2)

• Each player chooses an action 
• e.g., 𝒜 = ℬ = {𝑟𝑜𝑐𝑘, 𝑝𝑎𝑝𝑒𝑟, 𝑠𝑐𝑖𝑠𝑠𝑜𝑟}, you choose 𝑎 ∈ 𝒜, your opponent choose 
𝑏 ∈ ℬ

• Each player receives a reward 
• e.g., when you choose 𝑎 = 𝑟𝑜𝑐𝑘 and your opponent choose 𝑏 = 𝑝𝑎𝑝𝑒𝑟, you 

receive reward -1 (lose) and your opponent receive 1 (win)
• More generally, when you choose 𝑎 and your opponent choose 𝑏, you receive 
𝑅1(𝑎, 𝑏) and your opponent receive 𝑅2(𝑎, 𝑏)

• Zero-sum game: 𝑅1 𝑎, 𝑏 + 𝑅2 𝑎, 𝑏 +⋯ = 0
• So we can use a single function 𝑅(𝑎, 𝑏) to denote the reward in 2-player setting



Matrix Game: policy (strategy)

𝑅1(𝑎, 𝑏) Rock Paper Scissor

Rock 0 -1 1

Paper 1 0 -1

Scissor -1 1 0

Your opponent’s action 𝑏

Y
o

u
r 

ac
ti
o

n
 𝑎

𝑅2(𝑎, 𝑏) Rock Paper Scissor

Rock 0 1 -1

Paper -1 0 1

Scissor 1 -1 0

Your opponent’s action 𝑏

Y
o

u
r 

ac
ti
o

n
 𝑎

Your reward Your opponent’s reward

Here we have action 𝑎 ∈ 𝒜, what about the policy 𝜋(⋅) ∈ Δ𝒜?
Different from MDP, we don’t have state here. 
• MDP: deterministic policy 𝜋: 𝒮 → 𝒜 or stochastic policy 𝜋: 𝒮 → Δ𝒜
• Matrix Game: pure strategy 𝜇 ∈ 𝒜, 𝜈 ∈ ℬ or mixed strategy 𝜇 ∈ Δ𝒜 , 𝜈 ∈ Δℬ

E.g.
• Pure strategy: 𝜇 = 𝑟𝑜𝑐𝑘 (you always play rock), 𝜈 = 𝑝𝑎𝑝𝑒𝑟 (your opponent always play paper), 𝑅 𝜇, 𝜈 = −1 (you always lose)

• Mixed strategy: 𝜇 = (
1

2
,
1

2
, 0) (you play 

1

2
rock, 

1

2
paper), 𝜈 = (0,

1

2
,
1

2
) (your opponent play 

1

2
paper, 

1

2
scissor)

Δ𝒜 : Distribution (simplex) over 
action set 𝒜. E.g., 0.3, 0.3, 0.4 ∈
Δ𝒜 , which means you have 
probability 0.3 to play rock or paper, 
probability 0.4 to play scissor.



Matrix Game: reward

𝑅1(𝑎, 𝑏) Rock Paper Scissor

Rock 0 -1 1

Paper 1 0 -1

Scissor -1 1 0

Your opponent’s action 𝑏

Y
o

u
r 

ac
ti
o

n
 𝑎

𝑅2(𝑎, 𝑏) Rock Paper Scissor

Rock 0 1 -1

Paper -1 0 1

Scissor 1 -1 0

Your opponent’s action 𝑏

Y
o

u
r 

ac
ti
o

n
 𝑎

Your reward Your opponent’s reward

What about the reward r ∈ ℝ?
Different from MDP, we have separate rewards for each player. 
Beside your action, your reward is also determined by what your opponent plays.
• MDP: 𝑟 𝑠, 𝑎 : 𝒮 × 𝒜 → ℝ

• Matrix Game: 𝑅1 𝑎, 𝑏 , 𝑅2(𝑎, 𝑏):𝒜 × ℬ → ℝ (matrices 𝑅𝑖 ∈ ℝ 𝒜 × ℬ )
Expected reward for player i: 𝑓𝑖 𝜇, 𝜈 = 𝔼𝑎~𝜇,𝑏~𝜈 𝑅𝑖 𝜇, 𝜈 = σ𝑎,𝑏 𝜇 𝑎 𝑅𝑖 𝜇, 𝜈 𝜈(𝑏) = 𝜇⊤𝑅𝑖𝜈

E.g. Mixed strategy: 𝜇 = (
1

2
,
1

2
, 0) (you play 

1

2
rock, 

1

2
paper), 𝜈 = (0,

1

2
,
1

2
) (your opponent play 

1

2
paper, 

1

2
scissor)

Your expected reward: 𝔼𝑎~𝜇,𝑏~𝜈 𝑅 𝜇, 𝜈 =
1

4
× (−1) +

1

4
× 1+ 

1

4
× 0+ 

1

4
× −1 = −

1

4

0.5 0.5 0
0 −1 1
1 0 −1
−1 1 0

0
0.5
0.5

= −0.25



Matrix Game: best response

𝑅1(𝑎, 𝑏) Rock Paper Scissor

Rock 0 -1 1

Paper 1 0 -1

Scissor -1 1 0

Your opponent’s action 𝑏

Y
o

u
r 

ac
ti
o

n
 𝑎

𝑅2(𝑎, 𝑏) Rock Paper Scissor

Rock 0 1 -1

Paper -1 0 1

Scissor 1 -1 0

Your opponent’s action 𝑏

Y
o

u
r 

ac
ti
o

n
 𝑎

Your reward Your opponent’s reward

What about the reward and the optimal policy 𝜋∗?
In matrix game, our optimal policy (strategy) is relevant to the policy (strategy) of the opponent.
• MDP: optimal policy 𝜋∗ = arg max

𝜋
𝔼𝑎~𝜋[σ𝑟𝑡] (the policy that maximize the cumulated reward)

• Matrix Game: best response for you 𝜇∗ 𝜈 = arg max
𝜇

𝔼𝑎~𝜇,𝑏~𝜈[𝑅1(𝑎, 𝑏)] (the strategy that maximize the 

reward given 𝜈), best response for your opponent 𝜈∗ 𝜇 = arg max
𝜈

𝔼𝑎~𝜇,𝑏~𝜈[𝑅2(𝑎, 𝑏)]

E.g.
• When your opponent play 𝜈 = (1,0,0) (always play rock), your best response is 𝑣 = (0,1,0) (always play paper) 

so that 𝔼𝑎~𝜇,𝑏~𝜈 𝑅 𝑎, 𝑏 = 1 is maximized.



Matrix Game: Nash equilibrium

𝑅1(𝑎, 𝑏) Rock Paper Scissor

Rock 0 -1 1

Paper 1 0 -1

Scissor -1 1 0

Your opponent’s action 𝑏

Y
o

u
r 

ac
ti
o

n
 𝑎

𝑅2(𝑎, 𝑏) Rock Paper Scissor

Rock 0 1 -1

Paper -1 0 1

Scissor 1 -1 0

Your opponent’s action 𝑏

Y
o

u
r 

ac
ti
o

n
 𝑎

Your reward Your opponent’s reward

Is there some “optimal policy (strategy)” that does not depend on the opponent’s policy (strategy)?

A Nash Equilibrium is a strategy (𝜇, 𝜈) such that neither player will gain anything by deviating from his own 
strategy while the opposing player continues to play its current strategy.

E.g., 𝜇 = 𝜈 = (
1

3
,
1

3
,
1

3
) is a Nash equilibrium (you cannot increase your expectation of reward if your opponent plays 

rock, paper and scissor equality, vice versa.)

Theorem: Every game with a finite number of players and action profiles has at least one Nash equilibrium.

Complete Proof: https://www.cs.ubc.ca/~jiang/papers/NashReport.pdf

https://www.cs.ubc.ca/~jiang/papers/NashReport.pdf


Zero-sum, 2-player Nash equilibrium proof

• Let 

𝑓 𝜇, 𝜈 = 𝔼𝑎~𝜇,𝑏~𝜈 𝑅 𝜇, 𝜈 = σ𝑎,𝑏 𝜇 𝑎 𝑅 𝜇, 𝜈 𝜈(𝑏) = 𝜇⊤𝑅𝜈

• be your expected reward (−𝑓 𝜇, 𝜈 for your opponent)

• In zero-sum, 2-player setting, a strategy pair (𝜇∗, 𝜈∗) is a Nash equilibrium if
• Your expected reward 𝑓 𝜇∗, 𝜈∗ ≥ max

𝜇
𝑓 𝜇, 𝑣∗

• Your opponent’s expected reward −𝑓 𝜇∗, 𝜈∗ ≥ max
𝜈

−𝑓 𝜇∗, 𝜈 ⇒ 𝑓 𝜇∗, 𝜈∗ ≤ min
𝜈

𝑓 𝜇∗, 𝜈

• That is,
max
𝜇

𝑓 𝜇, 𝑣∗ ≤ 𝑓 𝜇∗, 𝜈∗ ≤ min
𝜈

𝑓 𝜇∗, 𝜈 ∀𝜇, 𝜈 ∈ Δ𝒜

Which means
min
𝜈

max
𝜇

𝑓 𝜇, 𝜈 ≤ 𝑓 𝜇∗, 𝜈∗ ≤ max
𝜇

min
𝜈

𝑓 𝜇, 𝜈

max
𝑥

−𝑓 𝑥 = −min
𝑥

𝑓(𝑥)

min
𝜈
[max

𝜇
𝑓 𝜇, 𝜈 ] ≤ max

𝜇
𝑓 𝜇, 𝑣∗



Zero-sum, 2-player Nash equilibrium proof

Lemma: 
min
𝑏

max
𝑎

𝑓 𝑎, 𝑏 ≥ max
𝑎

min
𝑏

𝑓 𝑎, 𝑏

Proof:
𝑓 𝑎, 𝑏 ≥ min

𝑏
𝑓 𝑎, 𝑏 ∀𝑎, 𝑏

max
𝑎

𝑓 𝑎, 𝑏 ≥ max
𝑎

min
𝑏

𝑓 𝑎, 𝑏 ∀𝑏

min
𝑏

max
𝑎

𝑓 𝑎, 𝑏 ≥ max
𝑎

min
𝑏

𝑓 𝑎, 𝑏

∎

Ref: Minimax theorem, game theory and Lagrange duality https://www.youtube.com/watch?v=MFEkxYuoFqw

https://www.youtube.com/watch?v=MFEkxYuoFqw


Zero-sum, 2-player Nash equilibrium proof

So, the existence of a Nash Equilibrium implies that
min
𝜈

max
𝜇

𝑓 𝜇, 𝜈 = 𝑓 𝜇∗, 𝜈∗ = max
𝜇

min
𝜈

𝑓 𝜇, 𝜈

Von Naumann’s minimax theorem: Let 𝒰,𝒱 be convex, compact sets, 𝑓:𝒰 × 𝒱 → ℝ
is a convex-concave continuous function (meaning that 𝑓(𝜇,·) is convex ∀𝜇 and 𝑓(·
, 𝜈) is concave ∀𝜈). Then

min
𝜈

max
𝜇

𝑓 𝜇, 𝜈 = max
𝜇

min
𝜈

𝑓 𝜇, 𝜈

∎
In our case, 𝑓 𝜇, 𝜈 = 𝜇⊤𝑅𝑣 is bi-linear (convex-
concave), 𝜇 ∈ Δ𝒜 , 𝜈 ∈ Δℬ are simplex (convex)

Both the left and right side are constrained optimization problems
min
𝜈

max
𝜇

𝜇⊤𝑅𝜈 𝑠. 𝑡. 𝜇 ∈ Δ𝒜 , 𝜈 ∈ Δℬ

max
𝜇

min
𝜈

𝜇⊤𝑅𝜈 𝑠. 𝑡. 𝜇 ∈ Δ𝒜 , 𝜈 ∈ Δℬ

Which can be transformed as Linear Programming models. By the duality 
of Linear Programming, the equality also holds.



Finding Nash equilibrium

• (projected) gradient descent ascent
𝑥𝑡+1 = 𝑥𝑡 + 𝜂𝜕𝑥𝑓(𝑥𝑡 , 𝑦𝑡)
𝑦𝑡+1 = 𝑦𝑡 − 𝜂𝜕𝑦𝑓(𝑥𝑡 , 𝑦𝑡)



Markov Games

Matrix Game with state and transitions. 

• Each state 𝑠 ∈ 𝒮 is a Matrix game. 

• 𝑃(𝑠′|𝑠, 𝑎, 𝑏) is the transition probability (with multiple actions)

• 𝑟𝑖(𝑠, 𝑎, 𝑏) is the reward of player 𝑖 = 1,2 for Matrix Game 𝑠 when player 1 
plays 𝑎 and player 2 plays 𝑏.

Policy:

• MDP: deterministic policy 𝜋: 𝒮 → 𝒜 or stochastic policy 𝜋: 𝒮 → Δ𝒜
• Matrix Game: pure strategy 𝜇 ∈ 𝒜, 𝜈 ∈ ℬ or mixed strategy 𝜇 ∈ Δ𝒜 , 𝜈 ∈ Δℬ
• Markov Game: deterministic policy 𝜇: 𝒮 → 𝒜, 𝜈: 𝒮 → ℬ or stochastic policy 
𝜇: 𝒮 → Δ𝒜 , 𝜈: 𝒮 → Δℬ
• very similar to MDP, but have multiple policies for multiple players



Markov Games

Value function and expected reward for player 𝑖 given a state 𝑠

𝑉𝑖
𝜇,𝜈

𝑠 = 𝔼𝜇,𝜈 𝐺𝑖
𝑡 𝑠𝑡 = 𝑠 , 𝐺𝑖

𝑡 =෍

𝑘=𝑡

𝑇

𝑟𝑖(𝑠, 𝑎, 𝑏)

State-action value function for player 𝑖
𝑄𝑖
𝜇,𝜈

𝑠, 𝑎, 𝑏 = 𝔼𝜇,𝜈 𝐺𝑖
𝑡 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎, 𝑏𝑡 = 𝑏

Bellman Equation for player 𝑖
𝑄𝑖
𝜇,𝜈

𝑠, 𝑎, 𝑏 = 𝑟𝑖 𝑠, 𝑎, 𝑏 + 𝔼𝑠′~𝑃 ⋅ 𝑠, 𝑎, 𝑏 𝑉𝑖
𝜇,𝜈
(𝑠)

𝑉𝑖
𝜇,𝜈

𝑠 = ෍

𝑎∈𝒜,𝑏∈ℬ

𝜇 𝑠, 𝑎 𝑄𝑖
𝜇,𝜈

𝑠, 𝑎, 𝑏 𝜈(𝑠, 𝑏)

= 𝜇 𝑠 ⊤𝑄𝑖
𝜇,𝜈

𝑠 𝜈(𝑠)

Similarly, when we are in a zero-sum, 2-player setting, we can write 𝑟 𝑠, 𝑎, 𝑏 directly 
without specifying the player.

Lecture 3: MDP



Markov Games: best response & Nash 
Equilibrium
• If the policy of your opponent 𝜈 is given, the Markov Game becomes an 

MDP with optimal policy 𝜇∗ 𝑣 = argmax
𝜇

𝑉1
𝜇,𝜈, which is called the best 

response. Similarly, 𝜈∗ 𝜇 = argmax
𝜈

𝑉2
𝜇,𝜈.

• For 2-player zero-sum game, 𝑉2
𝜇,𝜈

= −𝑉1
𝜇,𝜈 (so we just write 𝑉1

𝜇,𝜈= 𝑉𝜇,𝜈)

• If (𝜇∗, 𝜈∗) is a Nash equilibrium, then
𝑉𝜇

∗,𝜈∗ ≥ max
𝜇

𝑉𝜇,𝜈
∗
, −𝑉𝜇

∗,𝜈∗ ≥ max
𝜈

−𝑉𝜇
∗,𝜈 ⇒ 𝑉𝜇

∗,𝜈∗ ≤ min
𝜈

𝑉𝜇
∗,𝜈

max
𝜇

𝑉𝜇,𝜈
∗
≤ 𝑉𝜇

∗,𝜈∗ ≤ min
𝜈

𝑉𝜇
∗,𝜈

Like the case in Matrix Game, we have
min
𝜈

max
𝜇

𝑉𝜇,𝜈 = 𝑉𝜇
∗,𝜈∗ = max

𝜇
min
𝜈

𝑉𝜇,𝜈

Replace 𝑓(𝜇, 𝜈) in Matrix Game 
to cumulated reward 𝑉𝜇,𝜈



Markov Game: finding Nash equilibrium

For a fixed opponent policy 𝜈, the Markov Game becomes an MDP, and we can find the best 
response via value iteration above

Lecture 3: MDP

For all state 𝑠 ∈ 𝑆:
𝑉 𝑠 = max

𝜋∈Δ𝒜
σ𝑎∈𝒜 𝜋(𝑎|𝑠)𝑄 𝑠, 𝑎 , in which 𝑄 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝔼𝑠′~𝑃(𝑠′|𝑠,𝑎)𝑉(𝑠

′)

For all state 𝑠 ∈ 𝑆:
𝑉𝜇,𝜈 𝑠 = max

𝜇∈Δ𝒜
σ𝑎∈𝒜,𝑏∈ℬ 𝜇 𝑠, 𝑎 𝑄𝜇,𝜈 𝑠, 𝑎, 𝑏 𝜈(𝑠, 𝑏), in which 𝑄𝜇,𝜈 𝑠, 𝑎, 𝑏 = 𝑟 𝑠, 𝑎, 𝑏 + 𝔼𝑠′~𝑃 ⋅ 𝑠, 𝑎, 𝑏 𝑉𝜇,𝜈 (𝑠)

Bellman Equation: 𝑉 𝑠 = σ𝑎∈𝒜 𝜋 𝑎 𝑠 𝑄(𝑠, 𝑎)

Bellman Equation:𝑉𝜇,𝜈 𝑠 = σ𝑎∈𝒜,𝑏∈ℬ 𝜇 𝑠, 𝑎 𝑄𝜇,𝜈 𝑠, 𝑎, 𝑏 𝜈(𝑠, 𝑏) = σ𝑎∈𝒜 𝜇 𝑠, 𝑎 [σ𝑏∈ℬ𝑄
𝜇,𝜈 𝑠, 𝑎, 𝑏 𝜈(𝑠, 𝑏)]

To find the Nash equilibrium, we use

For all state 𝑠 ∈ 𝑆:
𝑉𝜇,𝜈 𝑠 = min

𝜈∈Δℬ
max
𝜇∈Δ𝒜

σ𝑎∈𝒜,𝑏∈ℬ 𝜇 𝑠, 𝑎 𝑄𝜇,𝜈 𝑠, 𝑎, 𝑏 𝜈(𝑠, 𝑏)

= max
𝑎∈𝒜

𝑄 𝑠, 𝑎 , since 𝜋 𝑠 ∈ Δ𝒜, vector 𝜋 will be a one-hot vector when (greedily) maximized 

= max
𝑎∈𝒜

σ𝑏∈ℬ𝑄
𝜇,𝜈 𝑠, 𝑎, 𝑏 𝜈(𝑠, 𝑏)

For each state s ∈ 𝒮, finding a Nash Equilibrium for the 
Matrix Game with reward matrix 𝑄𝜇,𝜈 𝑠 ∈ ℝ 𝒜 × ℬ



Partially Observable MDP

• The state of many applications are not fully observable
• Poker (you don’t know your opponent’s hand)
• StarCraft (fog)

• Need more general models to describe the problem

POMDP: adds observation 𝒪 to the MDP formalization

• 𝕆(𝑜|𝑠): observation probability (under a state 𝑠, the possibility to observe 𝑜)

• 𝑟(𝑜): reward is a function of observation.

𝑠1 𝑠2 𝑠3

𝑎1 𝑎2 𝑎3

𝑜1 𝑜2 𝑜3

……

control

hidden

observed



“History” and policy

• Instead of state 𝑠, decisions is based on the entire history
𝜏𝑡 = 𝑜1, 𝑎1, 𝑜2, 𝑎2, ⋯ , 𝑜𝑡−1, 𝑎𝑡−1, 𝑜𝑡

• Policy is a mapping from history to (distribution of) action, 𝜋 𝜏 ∈ Δ𝒜
• Bellman Equation

• 𝑉𝜋 𝜏𝑡 = σ𝑎∈𝒜 𝜋 𝑎 𝜏𝑡 𝑄
𝜋(𝜏𝑡, 𝑎)

• 𝑄𝜋 𝜏𝑡, 𝑎𝑡 = 𝔼𝑜𝑡+1~𝑃 ⋅|𝜏𝑡,𝑎𝑡 [𝑟 𝑜𝑡+1 + 𝑉𝜋({𝜏𝑡, 𝑎𝑡 , 𝑜𝑡+1})]

• Bellman Optimality Equation
• 𝑉∗ 𝜏𝑡 = max

𝑎∈𝒜
𝑄∗(𝜏𝑡, 𝑎)

• 𝑄∗ 𝜏𝑡, 𝑎𝑡 = 𝔼𝑜𝑡+1~𝑃 ⋅|𝜏𝑡,𝑎𝑡 [𝑟 𝑜𝑡+1 + 𝑉∗({𝜏𝑡, 𝑎𝑡, 𝑜𝑡+1})]

• Optimal Policy 𝜋∗ 𝜏𝑡 = argmax
𝑎∈𝒜

𝑄∗(𝜏𝑡, 𝑎)

• Planning in POMDP in general cannot be done computational efficiently.



Belief states

• History gives a distribution over 𝑠2
• If two histories generate the same belief states, then there should not be 

difference in the future. (i.e., earlier view has redundancy)

• Belief state 𝑏𝑡 ∈ Δ𝒮 is a simplex (distribution) over all state 𝒮

• Policy 𝜋: Δ𝒮 → Δ𝒜 only needs to rely on sufficient statistics

• POMDP ⟺ belief-state MDP

𝑠1 𝑠2 𝑠3

𝑎1 𝑎2 𝑎3

𝑜1 𝑜2 𝑜3

……

control

hidden

observed



Belief states

• Update on belief states: the probability of state 𝑠𝑡+1 ∈ 𝒮 in 𝑏𝑡+1 is

𝑏𝑡+1 𝑠𝑡+1 =
𝑃(𝑠𝑡+1, 𝑜𝑡+1|𝑎𝑡 , 𝑏𝑡)

𝑃(𝑜𝑡+1|𝑎𝑡 , 𝑏𝑡)

So 𝑏𝑡+1 is a function of 𝑏𝑡, 𝑎𝑡 , 𝑜𝑡+1 (𝑏𝑡+1 = 𝑓(𝑏𝑡 , 𝑎𝑡 , 𝑜𝑡+1))

• Bellman Equation
• 𝑉𝜋 𝑏𝑡 = σ𝑎∈𝒜 𝜋 𝑎 𝑏𝑡 𝑄

𝜋(𝑏𝑡 , 𝑎)

• 𝑄𝜋 𝑏𝑡, 𝑎𝑡 = 𝔼𝑜𝑡+1~𝑃 ⋅|𝑏𝑡,𝑎𝑡 [𝑟 𝑜𝑡+1 + 𝑉𝜋(𝑓(𝑏𝑡 , 𝑎𝑡 , 𝑜𝑡+1))]

• In general, 𝑉∗ 𝑏 is not a linear function in 𝑏
• Still in general computationally intractable



Predictive State Representation

• State is not a must in dynamic systems
• In practical applications, there may or may not exist interpretable hidden states. They 

may not be unique, nor “intrinsic”

• Define a test 𝑡 = (𝑎1, 𝑜1, ⋯ , 𝑎𝑘 , 𝑜𝑘) of length 𝑘
• System-dynamics vector: 

𝑝 𝑡 = Pr(𝑜1 = 𝑜1, ⋯ , 𝑜𝑘 = 𝑜𝑘|𝑎1 = 𝑎1, ⋯ , 𝑎𝑘 = 𝑎𝑘)

• Once we know system dynamics vector, we know everything about the 
dynamic system

𝑎1 𝑎2 𝑎3

𝑜1 𝑜2 𝑜3

……

control

observed

? ? ?



System-dynamic Matrix

𝑝 𝑡 = Pr(𝑜1 = 𝑜1, ⋯ , 𝑜𝑘 = 𝑜𝑘|𝑎1 = 𝑎1, ⋯ , 𝑎𝑘 = 𝑎𝑘)

• It will be easier to see the structure in matrix form

• Test 𝑡 = (𝑎1, 𝑜1, ⋯ , 𝑎𝑘 , 𝑜𝑘), history ℎ = (𝑎1, 𝑜1, ⋯ , 𝑎𝑙 , 𝑜𝑙)
𝑝 𝑡|ℎ = Pr(𝑜𝑙+1 = 𝑜1, ⋯ , 𝑜𝑙+𝑘 = 𝑜𝑘|ℎ, 𝑎𝑙+1 = 𝑎1, ⋯ , 𝑎𝑙+𝑘 = 𝑎𝑘)

𝑡0,……,                  𝑡𝑖 ,……

ℎ0
.
.
.
ℎ𝑗
.
.
.

𝑃(𝑡𝑖|ℎ𝑗)

Empty 
set ∅

𝑃 𝑡 ℎ =
𝑝(ℎ𝑡)

𝑝(ℎ)
System-dynamic matrix can be computed by system-dynamic 
vector

For POMDP with |𝑺| hidden states, 𝒓𝒂𝒏𝒌 𝑺𝑫𝒎𝒂𝒕𝒓𝒊𝒙 ≤ |𝑺|
Proof. 𝑝 𝑡 ℎ = σ𝑠 𝑝 𝑡 𝑠 𝑝 𝑠 ℎ = 𝑏 ℎ ⊤𝑢𝑡 (s-dimensional inner 
product)

Fact: There exists dynamic system whose 𝒓𝒂𝒏𝒌(𝑺𝑫𝒎𝒂𝒕𝒓𝒊𝒙) = 𝟑, 
but cannot be represented by any finite POMDP

Concatenate 
ℎ and 𝑡



Core test 𝑄 and Predictive State 
Representation 𝜓(ℎ)
• 𝑄 = {𝑞1, ⋯ , 𝑞𝑘}, 𝑘 columns of SD matrix, full column rank

• 𝜓 ℎ = [𝑝 𝑞1 ℎ ,⋯ , 𝑝(𝑞𝑘|ℎ)]

• Then 𝑝 𝑡 ℎ = 𝑚𝑡
⊤𝜓(ℎ)

• Predicting a new column 𝑡 using core set. 
• Linear coefficient 𝑚𝑡 should not depends on ℎ

• 𝜓(ℎ) is called Predictive State Representation of ℎ
• A sufficient statistic, similar to the role of belief state


