Matrix Game, Markov Game, POMDP, PSR

Xihan Li
Oct 22, 2021
Contents based on https://sites.google.com/view/ciin/ele524

Outline

Single-agent control: finding optimal policy

Controlled by multi-
agent
(two players, two
actions, two rewards)

Matrix Game

- A set of players
- e.g., you (row player, player 1) and your opponent (column player, player 2)
- Each player chooses an action
- e.g., $\mathcal{A}=\mathcal{B}=\{$ rock, paper, scissor $\}$, you choose $a \in \mathcal{A}$, your opponent choose $b \in \mathcal{B}$
- Each player receives a reward
- e.g., when you choose $a=$ rock and your opponent choose $b=$ paper, you receive reward -1 (lose) and your opponent receive 1 (win)
- More generally, when you choose a and your opponent choose b, you receive $R_{1}(a, b)$ and your opponent receive $R_{2}(a, b)$
- Zero-sum game: $R_{1}(a, b)+R_{2}(a, b)+\cdots=0$
- So we can use a single function $R(a, b)$ to denote the reward in 2-player setting

Matrix Game: policy (strategy)

Your opponent's action b

Your opponent's action b

Here we have action $a \in \mathcal{A}$, what about the policy $\pi(\cdot) \in \Delta_{\mathcal{A}}$?
Different from MDP, we don't have state here.

- MDP: deterministic policy $\pi: \mathcal{S} \rightarrow \mathcal{A}$ or stochastic policy $\pi: \mathcal{S} \rightarrow \Delta_{\mathcal{A}}$
- Matrix Game: pure strategy $\mu \in \mathcal{A}, v \in \mathcal{B}$ or mixed strategy $\mu \in \Delta_{\mathcal{A}}, v \in \Delta_{\mathcal{B}}$
$\Delta_{\mathcal{A}}$: Distribution (simplex) over action set \mathcal{A}. E.g., $(0.3,0.3,0.4) \in$ $\Delta_{\mathcal{A}}$, which means you have probability 0.3 to play rock or paper, probability 0.4 to play scissor.

E.g.

- Pure strategy: $\mu=\operatorname{rock}$ (you always play rock), $v=\operatorname{paper}$ (your opponent always play paper), $R(\mu, v)=-1$ (you always lose)
- Mixed strategy: $\mu=\left(\frac{1}{2}, \frac{1}{2}, 0\right)$ (you play $\frac{1}{2}$ rock, $\frac{1}{2}$ paper), $v=\left(0, \frac{1}{2}, \frac{1}{2}\right.$) (your opponent play $\frac{1}{2}$ paper, $\frac{1}{2}$ scissor)

Matrix Game: reward

Your opponent's action b

Your opponent's action b

	$R_{2}(a, b)$	Rock	Paper	Scissor
	Rock	0	1	-1
	Paper	-1	0	1
$\stackrel{\rightharpoonup}{\circ}$	Scissor	1	-1	0

Your opponent's reward
What about the reward $\mathrm{r} \in \mathbb{R}$?
Different from MDP, we have separate rewards for each player.
$\left[\begin{array}{lll}0.5 & 0.5 & 0\end{array}\right]\left[\begin{array}{ccc}0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0\end{array}\right]\left[\begin{array}{c}0 \\ 0.5 \\ 0.5\end{array}\right]=-0.25$

Beside your action, your reward is also determined by what your opponent plays.

- MDP: $r(s, a): \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$
- Matrix Game: $R_{1}(a, b), R_{2}(a, b): \mathcal{A} \times \mathcal{B} \rightarrow \mathbb{R}$ (matrices $R_{i} \in \mathbb{R}^{|\mathcal{A}| \times|\mathcal{B}|}$)

Expected reward for player i: $f_{i}(\mu, v)=\mathbb{E}_{a \sim \mu, b \sim v}\left[R_{i}(\mu, v)\right]=\sum_{a, b} \mu(a) R_{i}(\mu, v) v(b)=\mu^{\top} R_{i} v$
E.g. Mixed strategy: $\mu=\left(\frac{1}{2}, \frac{1}{2}, 0\right)$ (you play $\frac{1}{2}$ rock, $\frac{1}{2}$ paper), $v=\left(0, \frac{1}{2}, \frac{1}{2}\right)$ (your opponent play $\frac{1}{2}$ paper, $\frac{1}{2}$ scissor)

Your expected reward: $\mathbb{E}_{a \sim \mu, b \sim v}[R(\mu, v)]=\frac{1}{4} \times(-1)+\frac{1}{4} \times 1+\frac{1}{4} \times 0+\frac{1}{4} \times(-1)=-\frac{1}{4}$

Matrix Game: best response

Your opponent's action b

Your reward

Your opponent's action b

What about the reward and the optimal policy π^{*} ?
In matrix game, our optimal policy (strategy) is relevant to the policy (strategy) of the opponent.

- MDP: optimal policy $\pi^{*}=\arg \max _{\pi} \mathbb{E}_{a \sim \pi}\left[\sum r_{t}\right]$ (the policy that maximize the cumulated reward)
- Matrix Game: best response for you $\mu^{*}(v)=\arg \max _{\mu} \mathbb{E}_{a \sim \mu, b \sim \nu}\left[R_{1}(a, b)\right]$ (the strategy that maximize the reward given v), best response for your opponent $v^{*}(\mu)=\arg \max _{v} \mathbb{E}_{a \sim \mu, b \sim \nu}\left[R_{2}(a, b)\right]$
E.g.
- When your opponent play $v=(1,0,0)$ (always play rock), your best response is $v=(0,1,0)$ (always play paper) so that $\mathbb{E}_{a \sim \mu, b \sim \nu}[R(a, b)]=1$ is maximized.

Matrix Game: Nash equilibrium

Your opponent's action b

$R_{1}(a, b)$	Rock	Paper	Scissor
Rock	0	-1	1
Paper	1	0	-1
Scissor	-1	1	0

Your reward

Your opponent's action b

Is there some "optimal policy (strategy)" that does not depend on the opponent's policy (strategy)?
A Nash Equilibrium is a strategy (μ, v) such that neither player will gain anything by deviating from his own strategy while the opposing player continues to play its current strategy.
E.g., $\mu=v=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right.$) is a Nash equilibrium (you cannot increase your expectation of reward if your opponent plays rock, paper and scissor equality, vice versa.)

Theorem: Every game with a finite number of players and action profiles has at least one Nash equilibrium.
Complete Proof: https://www.cs.ubc.ca/~jiang/papers/NashReport.pdf

Zero-sum, 2-player Nash equilibrium proof

- Let

$$
f(\mu, v)=\mathbb{E}_{a \sim \mu, b \sim v}[R(\mu, v)]=\sum_{a, b} \mu(a) R(\mu, v) v(b)=\mu^{\top} R v
$$

- be your expected reward ($-f(\mu, v$) for your opponent)
- In zero-sum, 2-player setting, a strategy pair $\left(\mu^{*}, v^{*}\right)$ is a Nash equilibrium if
- Your expected reward $f\left(\mu^{*}, v^{*}\right) \geq \max _{\mu} f\left(\mu, v^{*}\right)$
- Your opponent's expected reward $-f\left(\mu^{*}, \nu^{*}\right) \geq \max _{v}-f\left(\mu^{*}, v\right) \Rightarrow f\left(\mu^{*}, v^{*}\right) \leq \min _{v} f\left(\mu^{*}, v\right)$
- That is,

$$
\max _{\mu} f\left(\mu, v^{*}\right) \leq f\left(\mu^{*}, v^{*}\right) \leq \min _{v} f\left(\mu^{*}, v\right) \forall \mu, v \in \Delta_{\mathcal{A}}^{\max _{x}-f(x)=-\min _{x} f(x)}
$$

Which means

$$
\min _{v} \max _{\mu} f(\mu, v) \leq f\left(\mu^{*}, v^{*}\right) \leq \max _{\mu} \min _{v} f(\mu, v)
$$

$$
\min _{v}\left[\max _{\mu} f(\mu, v)\right] \leq \max _{\mu} f\left(\mu, v^{*}\right)
$$

Zero-sum, 2-player Nash equilibrium proof

Lemma:

$$
\min _{b} \max _{a} f(a, b) \geq \max _{a} \min _{b} f(a, b)
$$

Proof:

$$
\begin{gathered}
f(a, b) \geq \min _{b} f(a, b) \forall a, b \\
\max _{a} f(a, b) \geq \max _{a} \min _{b} f(a, b) \forall b \\
\min _{b} \max _{a} f(a, b) \geq \max _{a} \min _{b} f(a, b)
\end{gathered}
$$

Zero-sum, 2-player Nash equilibrium proof

So, the existence of a Nash Equilibrium implies that

$$
\min _{v} \max _{\mu} f(\mu, v)=f\left(\mu^{*}, v^{*}\right)=\max _{\mu} \min _{v} f(\mu, v)
$$

Von Naumann's minimax theorem: Let \mathcal{U}, \mathcal{V} be convex, compact sets, $f: \mathcal{U} \times \mathcal{V} \rightarrow \mathbb{R}$ is a convex-concave continuous function (meaning that $f(\mu \cdot \cdot)$ is convex $\forall \mu$ and $f(\cdot$,v) is concave $\forall v$). Then

$$
\min _{v} \max _{\mu} f(\mu, v)=\max _{\mu} \min _{v} f(\mu, v)
$$

$$
\begin{aligned}
& \text { In our case, } f(\mu, v)=\mu^{\top} R v \text { is bi-linear (convex- } \\
& \text { concave), } \mu \in \Delta_{\mathcal{A}}, v \in \Delta_{\mathcal{B}} \text { are simplex (convex) }
\end{aligned}
$$

Both the left and right side are constrained optimization problems

$$
\begin{aligned}
& \min _{v} \max _{\mu} \mu^{\top} R v \text { s.t. } \mu \in \Delta_{\mathcal{A}}, v \in \Delta_{\mathcal{B}} \\
& \max _{\mu} \min _{v} \mu^{\top} R v \text { s.t. } \mu \in \Delta_{\mathcal{A}}, v \in \Delta_{\mathcal{B}}
\end{aligned}
$$

Which can be transformed as Linear Programming models. By the duality of Linear Programming, the equality also holds.

Finding Nash equilibrium

- (projected) gradient descent ascent

$$
\begin{aligned}
& x_{t+1}=x_{t}+\eta \partial_{x} f\left(x_{t}, y_{t}\right) \\
& y_{t+1}=y_{t}-\eta \partial_{y} f\left(x_{t}, y_{t}\right)
\end{aligned}
$$

Markov Games

Matrix Game with state and transitions.

- Each state $s \in \mathcal{S}$ is a Matrix game.
- $P\left(s^{\prime} \mid s, a, b\right)$ is the transition probability (with multiple actions)
- $r_{i}(s, a, b)$ is the reward of player $i=1,2$ for Matrix Game s when player 1 plays a and player 2 plays b.
Policy:
- MDP: deterministic policy $\pi: \mathcal{S} \rightarrow \mathcal{A}$ or stochastic policy $\pi: \mathcal{S} \rightarrow \Delta_{\mathcal{A}}$
- Matrix Game: pure strategy $\mu \in \mathcal{A}, v \in \mathcal{B}$ or mixed strategy $\mu \in \Delta_{\mathcal{A}}, v \in \Delta_{\mathcal{B}}$
- Markov Game: deterministic policy $\mu: \mathcal{S} \rightarrow \mathcal{A}, v: \mathcal{S} \rightarrow \mathcal{B}$ or stochastic policy $\mu: \mathcal{S} \rightarrow \Delta_{\mathcal{A}}, v: \mathcal{S} \rightarrow \Delta_{\mathcal{B}}$
- very similar to MDP, but have multiple policies for multiple players

Markov Games

Value function and expected reward for player i given ${ }_{T}$ a state s

$$
V_{i}^{\mu, v}(s)=\mathbb{E}_{\mu, v}\left[G_{i}^{t} \mid s_{t}=s\right], G_{i}^{t}=\sum_{k=t}^{T} r_{i}(s, a, b)
$$

$$
V_{h}^{\pi}(s)=\mathbb{E}_{\pi}\left[\sum_{h^{\prime}=h}^{H} r_{h^{\prime}}\left(s_{h^{\prime}}, a_{h^{\prime}}\right) \mid s_{h}=s\right]
$$

State-action value function for player i

$$
Q_{i}^{\mu, v}(s, a, b)=\mathbb{E}_{\mu, v}\left[G_{i}^{t} \mid s_{t}=s, a_{t}=a, b_{t}=b\right]
$$

$Q_{h}^{\pi}(s, a)=\mathbb{E}_{\pi}\left[\sum_{h^{\prime}=h}^{H} r_{h^{\prime}}\left(s_{h^{\prime}}, a_{h^{\prime}}\right) \mid s_{h}=s, a_{h}=a\right]$
Bellman Equation for player i

$$
\begin{aligned}
& Q_{i}^{\mu, v}(s, a, b)=r_{i}(s, a, b)+\mathbb{E}_{s^{\prime} \sim P(\cdot \mid s, a, b)} V_{i}^{\mu, v}(s) \\
& V_{i}^{\mu, v}(s)=\sum_{\substack{a \in \mathcal{A}, b \in \mathcal{B}\\
\\
\\
}} \mu(s, a) Q_{i}^{\mu, v}(s, a, b) v(s, b) \\
& Q_{i}^{\mu, v}(s) v(s)
\end{aligned}
$$

$$
\begin{array}{ll}
\begin{cases}V_{h}^{\pi}(s) & =\sum_{a \in \mathcal{A}} Q_{h}^{\pi}(s, a) \pi_{h}(a \mid s) \\
Q_{h}^{\pi}(s, a) & =r_{h}(s, a)+\mathbb{E}_{s^{\prime} \sim \mathbb{P}_{h}(|\cdot| s, a)} V_{h+1}^{\pi}\left(s^{\prime}\right)\end{cases} \\
\hline
\end{array}
$$

Similarly, when we are in a zero-sum, 2-player setting, we can write $r(s, a, b)$ directly without specifying the player.

Markov Games: best response \& Nash Equilibrium

- If the policy of your opponent v is given, the Markov Game becomes an MDP with optimal policy $\mu^{*}(v)=\operatorname{argmax} V_{1}^{\mu, v}$, which is called the best response. Similarly, $v^{*}(\mu)=\underset{v}{\operatorname{argmax}} V_{2}^{\mu^{\mu}, v}$.
- For 2-player zero-sum game, $V_{2}^{\mu, v}=-V_{1}^{\mu, v}$ (so we just write $V_{1}^{\mu, v}=V^{\mu, v}$)
- If $\left(\mu^{*}, v^{*}\right)$ is a Nash equilibrium, then

$$
\begin{gathered}
V^{\mu^{*}, v^{*}} \geq \max _{\mu} V^{\mu, v^{*}},-V^{\mu^{*}, v^{*}} \geq \max _{v}-V^{\mu^{*}, v} \Rightarrow V^{\mu^{*}, v^{*}} \leq \min _{v} V^{\mu^{*}, v} \\
\max _{\mu} V^{\mu, v^{*}} \leq V^{\mu^{*}, v^{*}} \leq \min _{v} V^{\mu^{*}, v}
\end{gathered}
$$

Like the case in Matrix Game, we have

$$
\min _{v} \max _{\mu} V^{\mu, v}=V^{\mu^{*}, v^{*}}=\max _{\mu} \min _{v} V^{\mu, v}
$$

Markov Game: finding Nash equilibrium

Lecture 3: MDP

$$
\text { Bellman Equation: } V(s)=\sum_{a \in \mathcal{A}} \pi(a \mid s) Q(s, a)
$$

For all state $s \in S$:

$$
\begin{aligned}
V(s) & =\max _{\pi \in \Delta_{\mathcal{A}}} \sum_{a \in \mathcal{A}} \pi(a \mid s) Q(s, a), \text { in which } Q(s, a)=r(s, a)+\mathbb{E}_{s^{\prime} \sim P\left(s^{\prime} \mid s, a\right)} V\left(s^{\prime}\right) \\
& =\max _{a \in \mathcal{A}} Q(s, a), \text { since } \pi(s) \in \Delta_{\mathcal{A}}, \text { vector } \pi \text { will be a one-hot vector when (greedily) maximized }
\end{aligned}
$$

For a fixed opponent policy v, the Markov Game becomes an MDP, and we can find the best response via value iteration above

For all state $s \in S$:

$$
\text { Bellman Equation: } V^{\mu, v}(s)=\sum_{a \in \mathcal{A}, b \in \mathcal{B}} \mu(s, a) Q^{\mu, v}(s, a, b) v(s, b)=\sum_{a \in \mathcal{A}} \mu(s, a)\left[\sum_{b \in \mathcal{B}} Q^{\mu, v}(s, a, b) v(s, b)\right]
$$

$$
\begin{aligned}
V^{\mu, v}(s) & =\max _{\mu \in \Delta_{\mathcal{A}}} \sum_{a \in \mathcal{A}, b \in \mathcal{B}} \mu(s, a) Q^{\mu, v}(s, a, b) v(s, b), \text { in which } Q^{\mu, v}(s, a, b)=r(s, a, b)+\mathbb{E}_{s^{\prime} \sim P(\cdot \mid s, a, b)} V^{\mu, v}(s) \\
& =\max _{a \in \mathcal{A}} \sum_{b \in \mathcal{B}} Q^{\mu, v}(s, a, b) v(s, b)
\end{aligned}
$$

To find the Nash equilibrium, we use
For all state $s \in S$:

$$
V^{\mu, v}(s)=\min _{v \in \Delta_{\mathcal{B}}} \max _{\mu \in \Delta_{\mathcal{A}}} \sum_{a \in \mathcal{A}, b \in \mathcal{B}} \mu(s, a) Q^{\mu, v}(s, a, b) v(s, b)
$$

Partially Observable MDP

- The state of many applications are not fully observable
- Poker (you don't know your opponent's hand)
- StarCraft (fog)
- Need more general models to describe the problem

POMDP: adds observation \mathcal{O} to the MDP formalization

- $\mathbb{O}(o \mid s)$: observation probability (under a state s, the possibility to observe o)
- $r(o)$: reward is a function of observation.
observed
hidden
control

"History" and policy

- Instead of state s, decisions is based on the entire history

$$
\tau_{t}=\left(o_{1}, a_{1}, o_{2}, a_{2}, \cdots, o_{t-1}, a_{t-1}, o_{t}\right)
$$

- Policy is a mapping from history to (distribution of) action, $\pi(\tau) \in \Delta_{\mathcal{A}}$
- Bellman Equation
- $V^{\pi}\left(\tau_{t}\right)=\sum_{a \in \mathcal{A}} \pi\left(a \mid \tau_{t}\right) Q^{\pi}\left(\tau_{t}, a\right)$
- $Q^{\pi}\left(\tau_{t}, a_{t}\right)=\mathbb{E}_{o_{t+1} \sim P\left(\cdot \mid \tau_{t}, a_{t}\right)}\left[r\left(o_{t+1}\right)+V^{\pi}\left(\left\{\tau_{t}, a_{t}, o_{t+1}\right\}\right)\right]$
- Bellman Optimality Equation
- $V^{*}\left(\tau_{t}\right)=\max _{a \in \mathcal{A}} Q^{*}\left(\tau_{t}, a\right)$
- $Q^{*}\left(\tau_{t}, a_{t}\right)=\mathbb{E}_{o_{t+1} \sim P\left(\cdot \mid \tau_{t}, a_{t}\right)}\left[r\left(o_{t+1}\right)+V^{*}\left(\left\{\tau_{t}, a_{t}, o_{t+1}\right\}\right)\right]$
- Optimal Policy $\pi^{*}\left(\tau_{t}\right)=\arg \max _{a \in \mathcal{A}} Q^{*}\left(\tau_{t}, a\right)$
- Planning in POMDP in general cannot be done computational efficiently.

Belief states

- History gives a distribution over s_{2}
- If two histories generate the same belief states, then there should not be difference in the future. (i.e., earlier view has redundancy)
- Belief state $b_{t} \in \Delta_{\mathcal{S}}$ is a simplex (distribution) over all state \mathcal{S}
- Policy $\pi: \Delta_{\mathcal{S}} \rightarrow \Delta_{\mathcal{A}}$ only needs to rely on sufficient statistics
- POMDP \Leftrightarrow belief-state MDP

Belief states

- Update on belief states: the probability of state $s_{t+1} \in \mathcal{S}$ in b_{t+1} is

$$
b_{t+1}\left(s_{t+1}\right)=\frac{P\left(s_{t+1}, o_{t+1} \mid a_{t}, b_{t}\right)^{t}}{P\left(o_{t+1} \mid a_{t}, b_{t}\right)}
$$

So b_{t+1} is a function of $b_{t}, a_{t}, o_{t+1}\left(b_{t+1}=f\left(b_{t}, a_{t}, o_{t+1}\right)\right)$

- Bellman Equation
- $V^{\pi}\left(b_{t}\right)=\sum_{a \in \mathcal{A}} \pi\left(a \mid b_{t}\right) Q^{\pi}\left(b_{t}, a\right)$
- $Q^{\pi}\left(b_{t}, a_{t}\right)=\mathbb{E}_{o_{t+1} \sim P\left(\cdot \mid b_{t}, a_{t}\right)}\left[r\left(o_{t+1}\right)+V^{\pi}\left(f\left(b_{t}, a_{t}, o_{t+1}\right)\right)\right]$
- In general, $V^{*}(b)$ is not a linear function in b
- Still in general computationally intractable

Predictive State Representation

- State is not a must in dynamic systems
- In practical applications, there may or may not exist interpretable hidden states. They may not be unique, nor "intrinsic"
- Define a test $t=\left(a^{1}, o^{1}, \cdots, a^{k}, o^{k}\right)$ of length k
- System-dynamics vector:

$$
p(t)=\operatorname{Pr}\left(o_{1}=o^{1}, \cdots, o_{k}=o^{k} \mid a_{1}=a^{1}, \cdots, a_{k}=a^{k}\right)
$$

- Once we know system dynamics vector, we know everything about the dynamic system

System-dynamic Matrix

$$
p(t)=\operatorname{Pr}\left(o_{1}=o^{1}, \cdots, o_{k}=o^{k} \mid a_{1}=a^{1}, \cdots, a_{k}=a^{k}\right)
$$

- It will be easier to see the structure in matrix form
- Test $t=\left(a^{1}, o^{1}, \cdots, a^{k}, o^{k}\right)$, history $h=\left(a_{1}, o_{1}, \cdots, a_{l}, o_{l}\right)$

$$
p(t \mid h)=\operatorname{Pr}\left(o_{l+1}=o^{1}, \cdots, o_{l+k}=o^{k} \mid h, a_{l+1}=a^{1}, \cdots, a_{l+k}=a^{k}\right)
$$

Concatenate h and t

		$t_{0}, \cdots \cdots$,	$t_{i}, \cdots \cdots$
Empty			
set \varnothing	h_{0}		
\cdot			
\cdot			
h_{j}			
\cdot			
\cdot			

$$
P(t \mid h)=\frac{p(h t)}{p(h)}
$$

System-dynamic matrix can be computed by system-dynamic vector

For POMDP with $|\boldsymbol{S}|$ hidden states, $\boldsymbol{r a n k}(\boldsymbol{S D}$ matrix) $\leq|\boldsymbol{S}|$ Proof. $p(t \mid h)=\sum_{s} p(t \mid s) p(s \mid h)=b[h]^{\top} u_{t}$ (s-dimensional inner product)

Fact: There exists dynamic system whose $\operatorname{rank}(S D$ matrix $)=3$, but cannot be represented by any finite POMDP

Core test Q and Predictive State Representation $\psi(h)$

- $Q=\left\{q_{1}, \cdots, q_{k}\right\}, k$ columns of SD matrix, full column rank
- $\psi(h)=\left[p\left(q_{1} \mid h\right), \cdots, p\left(q_{k} \mid h\right)\right]$
- Then $p(t \mid h)=m_{t}^{\top} \psi(h)$
- Predicting a new column t using core set.
- Linear coefficient m_{t} should not depends on h
- $\psi(h)$ is called Predictive State Representation of h
- A sufficient statistic, similar to the role of belief state

