
Matrix Game, Markov Game, 
POMDP, PSR

Xihan Li

Oct 22, 2021

Contents based on https://sites.google.com/view/cjin/ele524

https://sites.google.com/view/cjin/ele524


Outline

Matrix 
Game

Markov 
Game

MDP POMDP PSR

Controlled by multi-
agent

(two players, two 
actions, two rewards)

Partially Observable
(state is hidden)

No state
(state is not a must 

for dynamic systems)

With state transition
(from one matrix 
game to another)

(also named “Stochastic Game”)

(predictive state representations)

Markov 
Chain

HMM
(Hidden Markov Model)

Controlled
(with action)

Partially Observable
(state is hidden)

Controlled
(with action)

Multi-agent control:
finding Nash equilibrium

Single-agent control:
finding optimal policy

(Markov Decision Process)
Bandit

With state transition



Matrix Game

• A set of players
• e.g., you (row player, player 1) and your opponent (column player, player 2)

• Each player chooses an action 
• e.g., 𝒜 = ℬ = {𝑟𝑜𝑐𝑘, 𝑝𝑎𝑝𝑒𝑟, 𝑠𝑐𝑖𝑠𝑠𝑜𝑟}, you choose 𝑎 ∈ 𝒜, your opponent choose 
𝑏 ∈ ℬ

• Each player receives a reward 
• e.g., when you choose 𝑎 = 𝑟𝑜𝑐𝑘 and your opponent choose 𝑏 = 𝑝𝑎𝑝𝑒𝑟, you 

receive reward -1 (lose) and your opponent receive 1 (win)
• More generally, when you choose 𝑎 and your opponent choose 𝑏, you receive 
𝑅1(𝑎, 𝑏) and your opponent receive 𝑅2(𝑎, 𝑏)

• Zero-sum game: 𝑅1 𝑎, 𝑏 + 𝑅2 𝑎, 𝑏 +⋯ = 0
• So we can use a single function 𝑅(𝑎, 𝑏) to denote the reward in 2-player setting



Matrix Game: policy (strategy)

𝑅1(𝑎, 𝑏) Rock Paper Scissor

Rock 0 -1 1

Paper 1 0 -1

Scissor -1 1 0

Your opponent’s action 𝑏

Y
o

u
r 

ac
ti
o

n
 𝑎

𝑅2(𝑎, 𝑏) Rock Paper Scissor

Rock 0 1 -1

Paper -1 0 1

Scissor 1 -1 0

Your opponent’s action 𝑏

Y
o

u
r 

ac
ti
o

n
 𝑎

Your reward Your opponent’s reward

Here we have action 𝑎 ∈ 𝒜, what about the policy 𝜋(⋅) ∈ Δ𝒜?
Different from MDP, we don’t have state here. 
• MDP: deterministic policy 𝜋: 𝒮 → 𝒜 or stochastic policy 𝜋: 𝒮 → Δ𝒜
• Matrix Game: pure strategy 𝜇 ∈ 𝒜, 𝜈 ∈ ℬ or mixed strategy 𝜇 ∈ Δ𝒜 , 𝜈 ∈ Δℬ

E.g.
• Pure strategy: 𝜇 = 𝑟𝑜𝑐𝑘 (you always play rock), 𝜈 = 𝑝𝑎𝑝𝑒𝑟 (your opponent always play paper), 𝑅 𝜇, 𝜈 = −1 (you always lose)

• Mixed strategy: 𝜇 = (
1

2
,
1

2
, 0) (you play 

1

2
rock, 

1

2
paper), 𝜈 = (0,

1

2
,
1

2
) (your opponent play 

1

2
paper, 

1

2
scissor)

Δ𝒜 : Distribution (simplex) over 
action set 𝒜. E.g., 0.3, 0.3, 0.4 ∈
Δ𝒜 , which means you have 
probability 0.3 to play rock or paper, 
probability 0.4 to play scissor.



Matrix Game: reward

𝑅1(𝑎, 𝑏) Rock Paper Scissor

Rock 0 -1 1

Paper 1 0 -1

Scissor -1 1 0

Your opponent’s action 𝑏

Y
o

u
r 

ac
ti
o

n
 𝑎

𝑅2(𝑎, 𝑏) Rock Paper Scissor

Rock 0 1 -1

Paper -1 0 1

Scissor 1 -1 0

Your opponent’s action 𝑏

Y
o

u
r 

ac
ti
o

n
 𝑎

Your reward Your opponent’s reward

What about the reward r ∈ ℝ?
Different from MDP, we have separate rewards for each player. 
Beside your action, your reward is also determined by what your opponent plays.
• MDP: 𝑟 𝑠, 𝑎 : 𝒮 × 𝒜 → ℝ

• Matrix Game: 𝑅1 𝑎, 𝑏 , 𝑅2(𝑎, 𝑏):𝒜 × ℬ → ℝ (matrices 𝑅𝑖 ∈ ℝ 𝒜 × ℬ )
Expected reward for player i: 𝑓𝑖 𝜇, 𝜈 = 𝔼𝑎~𝜇,𝑏~𝜈 𝑅𝑖 𝜇, 𝜈 = σ𝑎,𝑏 𝜇 𝑎 𝑅𝑖 𝜇, 𝜈 𝜈(𝑏) = 𝜇⊤𝑅𝑖𝜈

E.g. Mixed strategy: 𝜇 = (
1

2
,
1

2
, 0) (you play 

1

2
rock, 

1

2
paper), 𝜈 = (0,

1

2
,
1

2
) (your opponent play 

1

2
paper, 

1

2
scissor)

Your expected reward: 𝔼𝑎~𝜇,𝑏~𝜈 𝑅 𝜇, 𝜈 =
1

4
× (−1) +

1

4
× 1+ 

1

4
× 0+ 

1

4
× −1 = −

1

4

0.5 0.5 0
0 −1 1
1 0 −1
−1 1 0

0
0.5
0.5

= −0.25



Matrix Game: best response

𝑅1(𝑎, 𝑏) Rock Paper Scissor

Rock 0 -1 1

Paper 1 0 -1

Scissor -1 1 0

Your opponent’s action 𝑏

Y
o

u
r 

ac
ti
o

n
 𝑎

𝑅2(𝑎, 𝑏) Rock Paper Scissor

Rock 0 1 -1

Paper -1 0 1

Scissor 1 -1 0

Your opponent’s action 𝑏

Y
o

u
r 

ac
ti
o

n
 𝑎

Your reward Your opponent’s reward

What about the reward and the optimal policy 𝜋∗?
In matrix game, our optimal policy (strategy) is relevant to the policy (strategy) of the opponent.
• MDP: optimal policy 𝜋∗ = arg max

𝜋
𝔼𝑎~𝜋[σ𝑟𝑡] (the policy that maximize the cumulated reward)

• Matrix Game: best response for you 𝜇∗ 𝜈 = arg max
𝜇

𝔼𝑎~𝜇,𝑏~𝜈[𝑅1(𝑎, 𝑏)] (the strategy that maximize the 

reward given 𝜈), best response for your opponent 𝜈∗ 𝜇 = arg max
𝜈

𝔼𝑎~𝜇,𝑏~𝜈[𝑅2(𝑎, 𝑏)]

E.g.
• When your opponent play 𝜈 = (1,0,0) (always play rock), your best response is 𝑣 = (0,1,0) (always play paper) 

so that 𝔼𝑎~𝜇,𝑏~𝜈 𝑅 𝑎, 𝑏 = 1 is maximized.



Matrix Game: Nash equilibrium

𝑅1(𝑎, 𝑏) Rock Paper Scissor

Rock 0 -1 1

Paper 1 0 -1

Scissor -1 1 0

Your opponent’s action 𝑏

Y
o

u
r 

ac
ti
o

n
 𝑎

𝑅2(𝑎, 𝑏) Rock Paper Scissor

Rock 0 1 -1

Paper -1 0 1

Scissor 1 -1 0

Your opponent’s action 𝑏

Y
o

u
r 

ac
ti
o

n
 𝑎

Your reward Your opponent’s reward

Is there some “optimal policy (strategy)” that does not depend on the opponent’s policy (strategy)?

A Nash Equilibrium is a strategy (𝜇, 𝜈) such that neither player will gain anything by deviating from his own 
strategy while the opposing player continues to play its current strategy.

E.g., 𝜇 = 𝜈 = (
1

3
,
1

3
,
1

3
) is a Nash equilibrium (you cannot increase your expectation of reward if your opponent plays 

rock, paper and scissor equality, vice versa.)

Theorem: Every game with a finite number of players and action profiles has at least one Nash equilibrium.

Complete Proof: https://www.cs.ubc.ca/~jiang/papers/NashReport.pdf

https://www.cs.ubc.ca/~jiang/papers/NashReport.pdf


Zero-sum, 2-player Nash equilibrium proof

• Let 

𝑓 𝜇, 𝜈 = 𝔼𝑎~𝜇,𝑏~𝜈 𝑅 𝜇, 𝜈 = σ𝑎,𝑏 𝜇 𝑎 𝑅 𝜇, 𝜈 𝜈(𝑏) = 𝜇⊤𝑅𝜈

• be your expected reward (−𝑓 𝜇, 𝜈 for your opponent)

• In zero-sum, 2-player setting, a strategy pair (𝜇∗, 𝜈∗) is a Nash equilibrium if
• Your expected reward 𝑓 𝜇∗, 𝜈∗ ≥ max

𝜇
𝑓 𝜇, 𝑣∗

• Your opponent’s expected reward −𝑓 𝜇∗, 𝜈∗ ≥ max
𝜈

−𝑓 𝜇∗, 𝜈 ⇒ 𝑓 𝜇∗, 𝜈∗ ≤ min
𝜈

𝑓 𝜇∗, 𝜈

• That is,
max
𝜇

𝑓 𝜇, 𝑣∗ ≤ 𝑓 𝜇∗, 𝜈∗ ≤ min
𝜈

𝑓 𝜇∗, 𝜈 ∀𝜇, 𝜈 ∈ Δ𝒜

Which means
min
𝜈

max
𝜇

𝑓 𝜇, 𝜈 ≤ 𝑓 𝜇∗, 𝜈∗ ≤ max
𝜇

min
𝜈

𝑓 𝜇, 𝜈

max
𝑥

−𝑓 𝑥 = −min
𝑥

𝑓(𝑥)

min
𝜈
[max

𝜇
𝑓 𝜇, 𝜈 ] ≤ max

𝜇
𝑓 𝜇, 𝑣∗



Zero-sum, 2-player Nash equilibrium proof

Lemma: 
min
𝑏

max
𝑎

𝑓 𝑎, 𝑏 ≥ max
𝑎

min
𝑏

𝑓 𝑎, 𝑏

Proof:
𝑓 𝑎, 𝑏 ≥ min

𝑏
𝑓 𝑎, 𝑏 ∀𝑎, 𝑏

max
𝑎

𝑓 𝑎, 𝑏 ≥ max
𝑎

min
𝑏

𝑓 𝑎, 𝑏 ∀𝑏

min
𝑏

max
𝑎

𝑓 𝑎, 𝑏 ≥ max
𝑎

min
𝑏

𝑓 𝑎, 𝑏

∎

Ref: Minimax theorem, game theory and Lagrange duality https://www.youtube.com/watch?v=MFEkxYuoFqw

https://www.youtube.com/watch?v=MFEkxYuoFqw


Zero-sum, 2-player Nash equilibrium proof

So, the existence of a Nash Equilibrium implies that
min
𝜈

max
𝜇

𝑓 𝜇, 𝜈 = 𝑓 𝜇∗, 𝜈∗ = max
𝜇

min
𝜈

𝑓 𝜇, 𝜈

Von Naumann’s minimax theorem: Let 𝒰,𝒱 be convex, compact sets, 𝑓:𝒰 × 𝒱 → ℝ
is a convex-concave continuous function (meaning that 𝑓(𝜇,·) is convex ∀𝜇 and 𝑓(·
, 𝜈) is concave ∀𝜈). Then

min
𝜈

max
𝜇

𝑓 𝜇, 𝜈 = max
𝜇

min
𝜈

𝑓 𝜇, 𝜈

∎
In our case, 𝑓 𝜇, 𝜈 = 𝜇⊤𝑅𝑣 is bi-linear (convex-
concave), 𝜇 ∈ Δ𝒜 , 𝜈 ∈ Δℬ are simplex (convex)

Both the left and right side are constrained optimization problems
min
𝜈

max
𝜇

𝜇⊤𝑅𝜈 𝑠. 𝑡. 𝜇 ∈ Δ𝒜 , 𝜈 ∈ Δℬ

max
𝜇

min
𝜈

𝜇⊤𝑅𝜈 𝑠. 𝑡. 𝜇 ∈ Δ𝒜 , 𝜈 ∈ Δℬ

Which can be transformed as Linear Programming models. By the duality 
of Linear Programming, the equality also holds.



Finding Nash equilibrium

• (projected) gradient descent ascent
𝑥𝑡+1 = 𝑥𝑡 + 𝜂𝜕𝑥𝑓(𝑥𝑡 , 𝑦𝑡)
𝑦𝑡+1 = 𝑦𝑡 − 𝜂𝜕𝑦𝑓(𝑥𝑡 , 𝑦𝑡)



Markov Games

Matrix Game with state and transitions. 

• Each state 𝑠 ∈ 𝒮 is a Matrix game. 

• 𝑃(𝑠′|𝑠, 𝑎, 𝑏) is the transition probability (with multiple actions)

• 𝑟𝑖(𝑠, 𝑎, 𝑏) is the reward of player 𝑖 = 1,2 for Matrix Game 𝑠 when player 1 
plays 𝑎 and player 2 plays 𝑏.

Policy:

• MDP: deterministic policy 𝜋: 𝒮 → 𝒜 or stochastic policy 𝜋: 𝒮 → Δ𝒜
• Matrix Game: pure strategy 𝜇 ∈ 𝒜, 𝜈 ∈ ℬ or mixed strategy 𝜇 ∈ Δ𝒜 , 𝜈 ∈ Δℬ
• Markov Game: deterministic policy 𝜇: 𝒮 → 𝒜, 𝜈: 𝒮 → ℬ or stochastic policy 
𝜇: 𝒮 → Δ𝒜 , 𝜈: 𝒮 → Δℬ
• very similar to MDP, but have multiple policies for multiple players



Markov Games

Value function and expected reward for player 𝑖 given a state 𝑠

𝑉𝑖
𝜇,𝜈

𝑠 = 𝔼𝜇,𝜈 𝐺𝑖
𝑡 𝑠𝑡 = 𝑠 , 𝐺𝑖

𝑡 =

𝑘=𝑡

𝑇

𝑟𝑖(𝑠, 𝑎, 𝑏)

State-action value function for player 𝑖
𝑄𝑖
𝜇,𝜈

𝑠, 𝑎, 𝑏 = 𝔼𝜇,𝜈 𝐺𝑖
𝑡 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎, 𝑏𝑡 = 𝑏

Bellman Equation for player 𝑖
𝑄𝑖
𝜇,𝜈

𝑠, 𝑎, 𝑏 = 𝑟𝑖 𝑠, 𝑎, 𝑏 + 𝔼𝑠′~𝑃 ⋅ 𝑠, 𝑎, 𝑏 𝑉𝑖
𝜇,𝜈
(𝑠)

𝑉𝑖
𝜇,𝜈

𝑠 = 

𝑎∈𝒜,𝑏∈ℬ

𝜇 𝑠, 𝑎 𝑄𝑖
𝜇,𝜈

𝑠, 𝑎, 𝑏 𝜈(𝑠, 𝑏)

= 𝜇 𝑠 ⊤𝑄𝑖
𝜇,𝜈

𝑠 𝜈(𝑠)

Similarly, when we are in a zero-sum, 2-player setting, we can write 𝑟 𝑠, 𝑎, 𝑏 directly 
without specifying the player.

Lecture 3: MDP



Markov Games: best response & Nash 
Equilibrium
• If the policy of your opponent 𝜈 is given, the Markov Game becomes an 

MDP with optimal policy 𝜇∗ 𝑣 = argmax
𝜇

𝑉1
𝜇,𝜈, which is called the best 

response. Similarly, 𝜈∗ 𝜇 = argmax
𝜈

𝑉2
𝜇,𝜈.

• For 2-player zero-sum game, 𝑉2
𝜇,𝜈

= −𝑉1
𝜇,𝜈 (so we just write 𝑉1

𝜇,𝜈= 𝑉𝜇,𝜈)

• If (𝜇∗, 𝜈∗) is a Nash equilibrium, then
𝑉𝜇

∗,𝜈∗ ≥ max
𝜇

𝑉𝜇,𝜈
∗
, −𝑉𝜇

∗,𝜈∗ ≥ max
𝜈

−𝑉𝜇
∗,𝜈 ⇒ 𝑉𝜇

∗,𝜈∗ ≤ min
𝜈

𝑉𝜇
∗,𝜈

max
𝜇

𝑉𝜇,𝜈
∗
≤ 𝑉𝜇

∗,𝜈∗ ≤ min
𝜈

𝑉𝜇
∗,𝜈

Like the case in Matrix Game, we have
min
𝜈

max
𝜇

𝑉𝜇,𝜈 = 𝑉𝜇
∗,𝜈∗ = max

𝜇
min
𝜈

𝑉𝜇,𝜈

Replace 𝑓(𝜇, 𝜈) in Matrix Game 
to cumulated reward 𝑉𝜇,𝜈



Markov Game: finding Nash equilibrium

For a fixed opponent policy 𝜈, the Markov Game becomes an MDP, and we can find the best 
response via value iteration above

Lecture 3: MDP

For all state 𝑠 ∈ 𝑆:
𝑉 𝑠 = max

𝜋∈Δ𝒜
σ𝑎∈𝒜 𝜋(𝑎|𝑠)𝑄 𝑠, 𝑎 , in which 𝑄 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝔼𝑠′~𝑃(𝑠′|𝑠,𝑎)𝑉(𝑠

′)

For all state 𝑠 ∈ 𝑆:
𝑉𝜇,𝜈 𝑠 = max

𝜇∈Δ𝒜
σ𝑎∈𝒜,𝑏∈ℬ 𝜇 𝑠, 𝑎 𝑄𝜇,𝜈 𝑠, 𝑎, 𝑏 𝜈(𝑠, 𝑏), in which 𝑄𝜇,𝜈 𝑠, 𝑎, 𝑏 = 𝑟 𝑠, 𝑎, 𝑏 + 𝔼𝑠′~𝑃 ⋅ 𝑠, 𝑎, 𝑏 𝑉𝜇,𝜈 (𝑠)

Bellman Equation: 𝑉 𝑠 = σ𝑎∈𝒜 𝜋 𝑎 𝑠 𝑄(𝑠, 𝑎)

Bellman Equation:𝑉𝜇,𝜈 𝑠 = σ𝑎∈𝒜,𝑏∈ℬ 𝜇 𝑠, 𝑎 𝑄𝜇,𝜈 𝑠, 𝑎, 𝑏 𝜈(𝑠, 𝑏) = σ𝑎∈𝒜 𝜇 𝑠, 𝑎 [σ𝑏∈ℬ𝑄
𝜇,𝜈 𝑠, 𝑎, 𝑏 𝜈(𝑠, 𝑏)]

To find the Nash equilibrium, we use

For all state 𝑠 ∈ 𝑆:
𝑉𝜇,𝜈 𝑠 = min

𝜈∈Δℬ
max
𝜇∈Δ𝒜

σ𝑎∈𝒜,𝑏∈ℬ 𝜇 𝑠, 𝑎 𝑄𝜇,𝜈 𝑠, 𝑎, 𝑏 𝜈(𝑠, 𝑏)

= max
𝑎∈𝒜

𝑄 𝑠, 𝑎 , since 𝜋 𝑠 ∈ Δ𝒜, vector 𝜋 will be a one-hot vector when (greedily) maximized 

= max
𝑎∈𝒜

σ𝑏∈ℬ𝑄
𝜇,𝜈 𝑠, 𝑎, 𝑏 𝜈(𝑠, 𝑏)

For each state s ∈ 𝒮, finding a Nash Equilibrium for the 
Matrix Game with reward matrix 𝑄𝜇,𝜈 𝑠 ∈ ℝ 𝒜 × ℬ



Partially Observable MDP

• The state of many applications are not fully observable
• Poker (you don’t know your opponent’s hand)
• StarCraft (fog)

• Need more general models to describe the problem

POMDP: adds observation 𝒪 to the MDP formalization

• 𝕆(𝑜|𝑠): observation probability (under a state 𝑠, the possibility to observe 𝑜)

• 𝑟(𝑜): reward is a function of observation.

𝑠1 𝑠2 𝑠3

𝑎1 𝑎2 𝑎3

𝑜1 𝑜2 𝑜3

……

control

hidden

observed



“History” and policy

• Instead of state 𝑠, decisions is based on the entire history
𝜏𝑡 = 𝑜1, 𝑎1, 𝑜2, 𝑎2, ⋯ , 𝑜𝑡−1, 𝑎𝑡−1, 𝑜𝑡

• Policy is a mapping from history to (distribution of) action, 𝜋 𝜏 ∈ Δ𝒜
• Bellman Equation

• 𝑉𝜋 𝜏𝑡 = σ𝑎∈𝒜 𝜋 𝑎 𝜏𝑡 𝑄
𝜋(𝜏𝑡, 𝑎)

• 𝑄𝜋 𝜏𝑡, 𝑎𝑡 = 𝔼𝑜𝑡+1~𝑃 ⋅|𝜏𝑡,𝑎𝑡 [𝑟 𝑜𝑡+1 + 𝑉𝜋({𝜏𝑡, 𝑎𝑡 , 𝑜𝑡+1})]

• Bellman Optimality Equation
• 𝑉∗ 𝜏𝑡 = max

𝑎∈𝒜
𝑄∗(𝜏𝑡, 𝑎)

• 𝑄∗ 𝜏𝑡, 𝑎𝑡 = 𝔼𝑜𝑡+1~𝑃 ⋅|𝜏𝑡,𝑎𝑡 [𝑟 𝑜𝑡+1 + 𝑉∗({𝜏𝑡, 𝑎𝑡, 𝑜𝑡+1})]

• Optimal Policy 𝜋∗ 𝜏𝑡 = argmax
𝑎∈𝒜

𝑄∗(𝜏𝑡, 𝑎)

• Planning in POMDP in general cannot be done computational efficiently.



Belief states

• History gives a distribution over 𝑠2
• If two histories generate the same belief states, then there should not be 

difference in the future. (i.e., earlier view has redundancy)

• Belief state 𝑏𝑡 ∈ Δ𝒮 is a simplex (distribution) over all state 𝒮

• Policy 𝜋: Δ𝒮 → Δ𝒜 only needs to rely on sufficient statistics

• POMDP ⟺ belief-state MDP

𝑠1 𝑠2 𝑠3

𝑎1 𝑎2 𝑎3

𝑜1 𝑜2 𝑜3

……

control

hidden

observed



Belief states

• Update on belief states: the probability of state 𝑠𝑡+1 ∈ 𝒮 in 𝑏𝑡+1 is

𝑏𝑡+1 𝑠𝑡+1 =
𝑃(𝑠𝑡+1, 𝑜𝑡+1|𝑎𝑡 , 𝑏𝑡)

𝑃(𝑜𝑡+1|𝑎𝑡 , 𝑏𝑡)

So 𝑏𝑡+1 is a function of 𝑏𝑡, 𝑎𝑡 , 𝑜𝑡+1 (𝑏𝑡+1 = 𝑓(𝑏𝑡 , 𝑎𝑡 , 𝑜𝑡+1))

• Bellman Equation
• 𝑉𝜋 𝑏𝑡 = σ𝑎∈𝒜 𝜋 𝑎 𝑏𝑡 𝑄

𝜋(𝑏𝑡 , 𝑎)

• 𝑄𝜋 𝑏𝑡, 𝑎𝑡 = 𝔼𝑜𝑡+1~𝑃 ⋅|𝑏𝑡,𝑎𝑡 [𝑟 𝑜𝑡+1 + 𝑉𝜋(𝑓(𝑏𝑡 , 𝑎𝑡 , 𝑜𝑡+1))]

• In general, 𝑉∗ 𝑏 is not a linear function in 𝑏
• Still in general computationally intractable



Predictive State Representation

• State is not a must in dynamic systems
• In practical applications, there may or may not exist interpretable hidden states. They 

may not be unique, nor “intrinsic”

• Define a test 𝑡 = (𝑎1, 𝑜1, ⋯ , 𝑎𝑘 , 𝑜𝑘) of length 𝑘
• System-dynamics vector: 

𝑝 𝑡 = Pr(𝑜1 = 𝑜1, ⋯ , 𝑜𝑘 = 𝑜𝑘|𝑎1 = 𝑎1, ⋯ , 𝑎𝑘 = 𝑎𝑘)

• Once we know system dynamics vector, we know everything about the 
dynamic system

𝑎1 𝑎2 𝑎3

𝑜1 𝑜2 𝑜3

……

control

observed

? ? ?



System-dynamic Matrix

𝑝 𝑡 = Pr(𝑜1 = 𝑜1, ⋯ , 𝑜𝑘 = 𝑜𝑘|𝑎1 = 𝑎1, ⋯ , 𝑎𝑘 = 𝑎𝑘)

• It will be easier to see the structure in matrix form

• Test 𝑡 = (𝑎1, 𝑜1, ⋯ , 𝑎𝑘 , 𝑜𝑘), history ℎ = (𝑎1, 𝑜1, ⋯ , 𝑎𝑙 , 𝑜𝑙)
𝑝 𝑡|ℎ = Pr(𝑜𝑙+1 = 𝑜1, ⋯ , 𝑜𝑙+𝑘 = 𝑜𝑘|ℎ, 𝑎𝑙+1 = 𝑎1, ⋯ , 𝑎𝑙+𝑘 = 𝑎𝑘)

𝑡0,……,                  𝑡𝑖 ,……

ℎ0
.
.
.
ℎ𝑗
.
.
.

𝑃(𝑡𝑖|ℎ𝑗)

Empty 
set ∅

𝑃 𝑡 ℎ =
𝑝(ℎ𝑡)

𝑝(ℎ)
System-dynamic matrix can be computed by system-dynamic 
vector

For POMDP with |𝑺| hidden states, 𝒓𝒂𝒏𝒌 𝑺𝑫𝒎𝒂𝒕𝒓𝒊𝒙 ≤ |𝑺|
Proof. 𝑝 𝑡 ℎ = σ𝑠 𝑝 𝑡 𝑠 𝑝 𝑠 ℎ = 𝑏 ℎ ⊤𝑢𝑡 (s-dimensional inner 
product)

Fact: There exists dynamic system whose 𝒓𝒂𝒏𝒌(𝑺𝑫𝒎𝒂𝒕𝒓𝒊𝒙) = 𝟑, 
but cannot be represented by any finite POMDP

Concatenate 
ℎ and 𝑡



Core test 𝑄 and Predictive State 
Representation 𝜓(ℎ)
• 𝑄 = {𝑞1, ⋯ , 𝑞𝑘}, 𝑘 columns of SD matrix, full column rank

• 𝜓 ℎ = [𝑝 𝑞1 ℎ ,⋯ , 𝑝(𝑞𝑘|ℎ)]

• Then 𝑝 𝑡 ℎ = 𝑚𝑡
⊤𝜓(ℎ)

• Predicting a new column 𝑡 using core set. 
• Linear coefficient 𝑚𝑡 should not depends on ℎ

• 𝜓(ℎ) is called Predictive State Representation of ℎ
• A sufficient statistic, similar to the role of belief state


