# Matrix Game, Markov Game, POMDP, PSR

Xihan Li

#### Oct 22, 2021

Contents based on <a href="https://sites.google.com/view/cjin/ele524">https://sites.google.com/view/cjin/ele524</a>



### Matrix Game

- A set of players
  - e.g., you (row player, player 1) and your opponent (column player, player 2)
- Each player chooses an action
  - e.g.,  $\mathcal{A} = \mathcal{B} = \{rock, paper, scissor\}$ , you choose  $a \in \mathcal{A}$ , your opponent choose  $b \in \mathcal{B}$
- Each player receives a reward
  - e.g., when you choose a = rock and your opponent choose b = paper, you receive reward -1 (lose) and your opponent receive 1 (win)
  - More generally, when you choose a and your opponent choose b, you receive  $R_1(a, b)$  and your opponent receive  $R_2(a, b)$
- Zero-sum game:  $R_1(a, b) + R_2(a, b) + \dots = 0$ 
  - So we can use a single function R(a, b) to denote the reward in 2-player setting

### Matrix Game: policy (strategy)

Your opponent's action b

| action a | $R_1(a,b)$  | Rock | Paper | Scissor |  |
|----------|-------------|------|-------|---------|--|
|          | Rock        | 0    | -1    | 1       |  |
|          | Paper       | 1    | 0     | -1      |  |
| our      | Scissor     | -1   | 1     | 0       |  |
| · ۲      | Your reward |      |       |         |  |

Here we have action  $a \in \mathcal{A}$ , what about the policy  $\pi(\cdot) \in \Delta_{\mathcal{A}}$ ?

• MDP: deterministic policy  $\pi: S \to A$  or stochastic policy  $\pi: S \to \Delta_A$ 

Matrix Game: pure strategy  $\mu \in \mathcal{A}, \nu \in \mathcal{B}$  or mixed strategy  $\mu \in \Delta_{\mathcal{A}}, \nu \in \Delta_{\mathcal{B}}$ 

Different from MDP, we don't have state here.

Your opponent's action b

| a    | $R_2(a,b)$ | Rock | Paper | Scissor |
|------|------------|------|-------|---------|
| ion  | Rock       | 0    | 1     | -1      |
| acti | Paper      | -1   | 0     | 1       |
| /our | Scissor    | 1    | -1    | 0       |

Your opponent's reward

 $\Delta_{\mathcal{A}}$ : Distribution (simplex) over action set  $\mathcal{A}$ . E.g., (0.3, 0.3, 0.4)  $\in$  $\Delta_{\mathcal{A}}$ , which means you have probability 0.3 to play rock or paper, probability 0.4 to play scissor.

E.g.

- Pure strategy:  $\mu = rock$  (you always play rock),  $\nu = paper$  (your opponent always play paper),  $R(\mu, \nu) = -1$  (you always lose)
- Mixed strategy:  $\mu = (\frac{1}{2}, \frac{1}{2}, 0)$  (you play  $\frac{1}{2}$  rock,  $\frac{1}{2}$  paper),  $\nu = (0, \frac{1}{2}, \frac{1}{2})$  (your opponent play  $\frac{1}{2}$  paper,  $\frac{1}{2}$  scissor)

### Matrix Game: reward

Your opponent's action b

#### Your opponent's action *b*



### Matrix Game: best response

Your opponent's action b

| action a | $R_1(a,b)$  | Rock | Paper | Scissor |  |
|----------|-------------|------|-------|---------|--|
|          | Rock        | 0    | -1    | 1       |  |
|          | Paper       | 1    | 0     | -1      |  |
| our      | Scissor     | -1   | 1     | 0       |  |
| · ۲      | Your reward |      |       |         |  |

Your opponent's action b

| а      | $R_2(a,b)$ | Rock | Paper | Scissor |
|--------|------------|------|-------|---------|
| action | Rock       | 0    | 1     | -1      |
|        | Paper      | -1   | 0     | 1       |
| our    | Scissor    | 1    | -1    | 0       |

Your opponent's reward

What about the reward and the optimal policy  $\pi^*$ ?

In matrix game, our optimal policy (strategy) is relevant to the policy (strategy) of the opponent.

- MDP: optimal policy  $\pi^* = \arg \max_{\pi} \mathbb{E}_{a \sim \pi}[\Sigma r_t]$  (the policy that maximize the cumulated reward)
- Matrix Game: **best response for you**  $\mu^*(\nu) = \arg \max_{\mu} \mathbb{E}_{a \sim \mu, b \sim \nu}[R_1(a, b)]$  (the strategy that maximize the reward given  $\nu$ ), **best response for your opponent**  $\nu^*(\mu) = \arg \max_{\nu} \mathbb{E}_{a \sim \mu, b \sim \nu}[R_2(a, b)]$

#### E.g.

When your opponent play ν = (1,0,0) (always play rock), your best response is ν = (0,1,0) (always play paper) so that E<sub>a~µ,b~ν</sub>[R(a, b)] = 1 is maximized.

### Matrix Game: Nash equilibrium

Your opponent's action b

Your opponent's action b

| our action <i>a</i> | $R_1(a,b)$ | Rock   | Paper | Scissor | our action <i>a</i> | $R_2(a,b)$ | Rock       | Paper        | Scissor |
|---------------------|------------|--------|-------|---------|---------------------|------------|------------|--------------|---------|
|                     | Rock       | 0      | -1    | 1       |                     | Rock       | 0          | 1            | -1      |
|                     | Paper      | 1      | 0     | -1      |                     | Paper      | -1         | 0            | 1       |
|                     | Scissor    | -1     | 1     | 0       |                     | Scissor    | 1          | -1           | 0       |
|                     |            | Your r | eward |         |                     |            | Your oppon | ent's reward | ]       |

Is there some "optimal policy (strategy)" that does not depend on the opponent's policy (strategy)?

A **Nash Equilibrium** is a strategy  $(\mu, \nu)$  such that neither player will gain anything by deviating from his own strategy while the opposing player continues to play its current strategy.

E.g.,  $\mu = \nu = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$  is a Nash equilibrium (you cannot increase your expectation of reward if your opponent plays rock, paper and scissor equality, vice versa.)

Theorem: *Every game with a finite number of players and action profiles has at least one Nash equilibrium.* Complete Proof: <u>https://www.cs.ubc.ca/~jiang/papers/NashReport.pdf</u>

### Zero-sum, 2-player Nash equilibrium proof

• Let

$$f(\mu,\nu) = \mathbb{E}_{a \sim \mu, b \sim \nu}[R(\mu,\nu)] = \sum_{a,b} \mu(a)R(\mu,\nu)\nu(b) = \mu^{\mathsf{T}}R\nu$$

- be your expected reward  $(-f(\mu, \nu)$  for your opponent)
- In zero-sum, 2-player setting, a strategy pair ( $\mu^*$ ,  $\nu^*$ ) is a Nash equilibrium if
  - Your expected reward  $f(\mu^*, \nu^*) \ge \max_{\mu} f(\mu, \nu^*)$
  - Your opponent's expected reward  $-f(\mu^*, \nu^*) \ge \max_{\nu} -f(\mu^*, \nu) \Rightarrow f(\mu^*, \nu^*) \le \min_{\nu} f(\mu^*, \nu)$
- That is,  $\max_{\mu} f(\mu, \nu^*) \le f(\mu^*, \nu^*) \le \min_{\nu} f(\mu^*, \nu) \quad \forall \mu, \nu \in \Delta_{\mathcal{A}}^{\left[\max_{x} - f(x) = -\min_{x} f(x)\right]}$

Which means

$$\min_{\nu} \max_{\mu} f(\mu, \nu) \le f(\mu^*, \nu^*) \le \max_{\mu} \min_{\nu} f(\mu, \nu)$$

 $\min_{\boldsymbol{\nu}}[\max_{\boldsymbol{\mu}} f(\boldsymbol{\mu}, \boldsymbol{\nu})] \le \max_{\boldsymbol{\mu}} f(\boldsymbol{\mu}, \boldsymbol{\nu}^*)$ 

### Zero-sum, 2-player Nash equilibrium proof

Lemma:  $\min_{b} \max_{a} f(a, b) \ge \max_{a} \min_{b} f(a, b)$ Proof:  $f(a, b) \ge \min_{b} f(a, b) \ \forall a, b$   $\max_{a} f(a, b) \ge \max_{a} \min_{b} f(a, b) \ \forall b$   $\min_{b} \max_{a} f(a, b) \ge \max_{a} \min_{b} f(a, b)$ 

Ref: Minimax theorem, game theory and Lagrange duality <u>https://www.youtube.com/watch?v=MFEkxYuoFqw</u>

### Zero-sum, 2-player Nash equilibrium proof

#### So, the existence of a Nash Equilibrium implies that $\min_{\nu} \max_{\mu} f(\mu, \nu) = f(\mu^*, \nu^*) = \max_{\mu} \min_{\nu} f(\mu, \nu)$

**Von Naumann's minimax theorem:** Let  $\mathcal{U}, \mathcal{V}$  be convex, compact sets,  $f: \mathcal{U} \times \mathcal{V} \to \mathbb{R}$  is a convex-concave continuous function (meaning that  $f(\mu, \cdot)$  is convex  $\forall \mu$  and  $f(\cdot, \nu)$  is concave  $\forall \nu$ ). Then

$$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

$$\min_{\nu} \max_{\mu} f(\mu, \nu) = \max_{\mu} \min_{\nu} f(\mu, \nu)$$

In our case,  $f(\mu, \nu) = \mu^{T} R \nu$  is bi-linear (convexconcave),  $\mu \in \Delta_{\mathcal{A}}, \nu \in \Delta_{\mathcal{B}}$  are simplex (convex)

Both the left and right side are constrained optimization problems  $\min_{\nu} \max_{\mu} \mu^{T} R \nu \ s. t. \ \mu \in \Delta_{\mathcal{A}}, \nu \in \Delta_{\mathcal{B}}$   $\max_{\mu} \min_{\nu} \mu^{T} R \nu \ s. t. \ \mu \in \Delta_{\mathcal{A}}, \nu \in \Delta_{\mathcal{B}}$ Which can be transformed as Linear Programming models. By the duality of Linear Programming, the equality also holds.

### Finding Nash equilibrium

• (projected) gradient descent ascent  $\begin{aligned} x_{t+1} &= x_t + \eta \partial_x f(x_t, y_t) \\ y_{t+1} &= y_t - \eta \partial_y f(x_t, y_t) \end{aligned}$ 

### Markov Games

Matrix Game with state and transitions.

- Each state  $s \in S$  is a Matrix game.
- P(s'|s, a, b) is the transition probability (with multiple actions)
- $r_i(s, a, b)$  is the reward of player i = 1,2 for Matrix Game s when player 1 plays a and player 2 plays b.

Policy:

- MDP: deterministic policy  $\pi: S \to \mathcal{A}$  or stochastic policy  $\pi: S \to \Delta_{\mathcal{A}}$
- Matrix Game: pure strategy  $\mu \in \mathcal{A}, \nu \in \mathcal{B}$  or mixed strategy  $\mu \in \Delta_{\mathcal{A}}, \nu \in \Delta_{\mathcal{B}}$
- Markov Game: deterministic policy  $\mu: S \to \mathcal{A}, \nu: S \to \mathcal{B}$  or stochastic policy  $\mu: S \to \Delta_{\mathcal{A}}, \nu: S \to \Delta_{\mathcal{B}}$ 
  - very similar to MDP, but have multiple policies for multiple players

### Markov Games

Value function and expected reward for player i given a state s

$$W_{i}^{\mu,\nu}(s) = \mathbb{E}_{\mu,\nu}\left[G_{i}^{t} \middle| s_{t} = s\right], G_{i}^{t} = \sum_{k=t}^{\infty} r_{i}(s, a, b)$$

 $Q_i^{\mu,\nu}(s,a,b) = \mathbb{E}_{\mu,\nu}[G_i^t|s_t = s, a_t = a, b_t = b]$ 

Lecture 3: MDP

$$V_{h}^{\pi}(s) = \mathbb{E}_{\pi}\left[\sum_{h'=h}^{H} r_{h'}(s_{h'}, a_{h'}) | s_{h} = s\right]$$

$$Q_{h}^{\pi}(s,a) = \mathbb{E}_{\pi}\left[\sum_{h'=h}^{H} r_{h'}(s_{h'},a_{h'})|s_{h}=s, a_{h}=a\right]$$

Bellman Equation for player *i* 

State-action value function for player *i* 

$$V_{i}^{\mu,\nu}(s, a, b) = r_{i}(s, a, b) + \mathbb{E}_{s' \sim P(\cdot|s, a, b)} V_{i}^{\mu,\nu}(s)$$
$$V_{i}^{\mu,\nu}(s) = \sum_{a \in \mathcal{A}, b \in \mathcal{B} \atop = \mu(s)^{\top} Q_{i}^{\mu,\nu}(s) \nu(s)} \mu(s, a, b) \nu(s, b)$$

$$\begin{cases} V_h^{\pi}(s) &= \sum_{a \in \mathcal{A}} Q_h^{\pi}(s, a) \pi_h(a|s) \\ Q_h^{\pi}(s, a) &= r_h(s, a) + \mathbb{E}_{s' \sim \mathbb{P}_h(\cdot|s, a)} V_{h+1}^{\pi}(s') \end{cases}$$

Similarly, when we are in a zero-sum, 2-player setting, we can write r(s, a, b) directly without specifying the player.

### Markov Games: best response & Nash Equilibrium

- If the policy of your opponent  $\nu$  is given, the Markov Game becomes an MDP with optimal policy  $\mu^*(\nu) = \operatorname{argmax} V_1^{\mu,\nu}$ , which is called the best response. Similarly,  $\nu^*(\mu) = \operatorname{argmax} V_2^{\mu,\nu}$ .
- For 2-player zero-sum game,  $V_2^{\mu,\nu} = -V_1^{\mu,\nu}$  (so we just write  $V_1^{\mu,\nu} = V^{\mu,\nu}$ )

• If 
$$(\mu^*, \nu^*)$$
 is a Nash equilibrium, then  
 $V^{\mu^*, \nu^*} \ge \max_{\mu} V^{\mu, \nu^*}, -V^{\mu^*, \nu^*} \ge \max_{\nu} -V^{\mu^*, \nu} \Rightarrow V^{\mu^*, \nu^*} \le \min_{\nu} V^{\mu^*, \nu}$   
 $\max_{\mu} V^{\mu, \nu^*} \le V^{\mu^*, \nu^*} \le \min_{\nu} V^{\mu^*, \nu}$ 

Like the case in Matrix Game, we have

$$\min_{\nu} \max_{\mu} V^{\mu,\nu} = V^{\mu^*,\nu^*} = \max_{\mu} \min_{\nu} V^{\mu,\nu}$$

Replace  $f(\mu, \nu)$  in Matrix Game to cumulated reward  $V^{\mu,\nu}$ 

### Markov Game: finding Nash equilibrium

Lecture 3: MDP For all state  $s \in S$ :  $V(s) = \max_{\pi \in \Delta_{\mathcal{A}}} \sum_{a \in \mathcal{A}} \pi(a|s)Q(s,a), \text{ in which } Q(s,a) = r(s,a) + \mathbb{E}_{s' \sim P(s'|s,a)}V(s')$   $= \max_{a \in \mathcal{A}} Q(s,a), \text{ since } \pi(s) \in \Delta_{\mathcal{A}}, \text{ vector } \pi \text{ will be a one-hot vector when (greedily) maximized}$ 

For a fixed opponent policy  $\nu$ , the Markov Game becomes an MDP, and we can find the best response via value iteration above

For all state  $s \in S$ :  $V^{\mu,\nu}(s) = \max_{\mu \in \Delta_{\mathcal{A}}} \sum_{a \in \mathcal{A}, b \in \mathcal{B}} \mu(s, a) Q^{\mu,\nu}(s, a, b) \nu(s, b) = \sum_{a \in \mathcal{A}} \mu(s, a) \left[ \sum_{b \in \mathcal{B}} Q^{\mu,\nu}(s, a, b) \nu(s, b) \right]$   $= \max_{a \in \mathcal{A}} \sum_{b \in \mathcal{B}} Q^{\mu,\nu}(s, a, b) \nu(s, b), \text{ in which } Q^{\mu,\nu}(s, a, b) = r(s, a, b) + \mathbb{E}_{s' \sim P(\cdot|s, a, b)} V^{\mu,\nu}(s)$   $= \max_{a \in \mathcal{A}} \sum_{b \in \mathcal{B}} Q^{\mu,\nu}(s, a, b) \nu(s, b)$ 

To find the Nash equilibrium, we use

For all state  $s \in S$ :  $V^{\mu,\nu}(s) = \min_{\nu \in \Delta_{\mathcal{B}}} \max_{\mu \in \Delta_{\mathcal{A}}} \sum_{a \in \mathcal{A}, b \in \mathcal{B}} \mu(s, a) Q^{\mu,\nu}(s, a, b) \nu(s, b)$ 

For each state  $s \in S$ , finding a Nash Equilibrium for the Matrix Game with reward matrix  $Q^{\mu,\nu}(s) \in \mathbb{R}^{|\mathcal{A}| \times |\mathcal{B}|}$ 

### Partially Observable MDP

- The state of many applications are not fully observable
  - Poker (you don't know your opponent's hand)
  - StarCraft (fog)
- Need more general models to describe the problem

POMDP: adds observation  $\mathcal{O}$  to the MDP formalization

- $\mathbb{O}(o|s)$ : observation probability (under a state s, the possibility to observe o)
- r(o): reward is a function of observation.



"History" and policy

- Instead of state s, decisions is based on the entire history  $\tau_t = (o_1, a_1, o_2, a_2, \cdots, o_{t-1}, a_{t-1}, o_t)$
- Policy is a mapping from history to (distribution of) action,  $\pi(\tau) \in \Delta_{\mathcal{A}}$
- Bellman Equation
  - $V^{\pi}(\tau_t) = \sum_{a \in \mathcal{A}} \pi(a|\tau_t) Q^{\pi}(\tau_t, a)$
  - $Q^{\pi}(\tau_t, a_t) = \mathbb{E}_{o_{t+1} \sim P(\cdot | \tau_t, a_t)}[r(o_{t+1}) + V^{\pi}(\{\tau_t, a_t, o_{t+1}\})]$
- Bellman Optimality Equation
  - $V^*(\tau_t) = \max_{a \in \mathcal{A}} Q^*(\tau_t, a)$
  - $Q^*(\tau_t, a_t) = \mathbb{E}_{o_{t+1} \sim P(\cdot | \tau_t, a_t)}[r(o_{t+1}) + V^*(\{\tau_t, a_t, o_{t+1}\})]$
  - Optimal Policy  $\pi^*(\tau_t) = \arg \max_{a \in \mathcal{A}} Q^*(\tau_t, a)$
- Planning in POMDP in general cannot be done computational efficiently.



- History gives a distribution over  $s_2$ 
  - If two histories generate the same belief states, then there should not be difference in the future. (i.e., earlier view has redundancy)
- Belief state  $b_t \in \Delta_{\mathcal{S}}$  is a simplex (distribution) over all state  $\mathcal{S}$
- Policy  $\pi: \Delta_{\mathcal{S}} \to \Delta_{\mathcal{A}}$  only needs to rely on sufficient statistics
- POMDP ⇔ belief-state MDP

### Belief states

• Update on belief states: the probability of state  $s_{t+1} \in S$  in  $b_{t+1}$  is  $b_{t+1}(s_{t+1}) = \frac{P(s_{t+1}, o_{t+1}|a_t, b_t)}{P(o_{t+1}|a_t, b_t)}$ 

So  $b_{t+1}$  is a function of  $b_t, a_t, o_{t+1} (b_{t+1} = f(b_t, a_t, o_{t+1}))$ 

• Bellman Equation

•  $V^{\pi}(\mathbf{b}_{t}) = \sum_{a \in \mathcal{A}} \pi(a|\mathbf{b}_{t})Q^{\pi}(\mathbf{b}_{t}, a)$ 

- $Q^{\pi}(b_t, a_t) = \mathbb{E}_{o_{t+1} \sim P(\cdot|b_t, a_t)}[r(o_{t+1}) + V^{\pi}(f(b_t, a_t, o_{t+1}))]$
- In general,  $V^*(b)$  is not a linear function in b
  - Still in general computationally intractable

### Predictive State Representation



- State is not a must in dynamic systems
  - In practical applications, there may or may not exist interpretable hidden states. They may not be unique, nor "intrinsic"
- Define a test  $t = (a^1, o^1, \dots, a^k, o^k)$  of length k
- System-dynamics vector:

$$p(t) = \Pr(o_1 = o^1, \dots, o_k = o^k | a_1 = a^1, \dots, a_k = a^k)$$

Once we know system dynamics vector, we know everything about the dynamic system

$$p(t) = \Pr(o_1 = o^1, \dots, o_k = o^k | a_1 = a^1, \dots, a_k = a^k)$$

• It will be easier to see the structure in matrix form





System-dynamic matrix can be computed by system-dynamic vector

 $P(t|h) = \frac{p(ht)}{p(h)}$ 

For POMDP with |S| hidden states,  $rank(SD matrix) \le |S|$ Proof.  $p(t|h) = \sum_{s} p(t|s)p(s|h) = b[h]^{\mathsf{T}}u_t$  (s-dimensional inner product)

Fact: There exists dynamic system whose rank(SD matrix) = 3, but cannot be represented by any finite POMDP

## Core test Q and Predictive State Representation $\psi(h)$

- $Q = \{q_1, \dots, q_k\}$ , k columns of SD matrix, full column rank
- $\psi(h) = [p(q_1|h), \cdots, p(q_k|h)]$
- Then  $p(t|h) = m_t^{\mathsf{T}} \psi(h)$ 
  - Predicting a new column *t* using core set.
  - Linear coefficient  $m_t$  should not depends on h
- $\psi(h)$  is called Predictive State Representation of h
  - A sufficient statistic, similar to the role of belief state