Matrix Game, Markov Game,
POMDP, PSR

Xihan LI
Oct 22, 2021
Contents based on https://sites.google.com/view/c|in/ele524

https://sites.google.com/view/cjin/ele524

Partially Observable
(state is hidden)

. Markov ~ HMM
O u tl | n e Cha | N (Hidden Markov Model)

Controlled Controlled
(with action) (with action)
No state
Partially Observable (state is not a must
"""""" With state transition ¥ (stateis hidden) v 'fb'r'dynamm systems)

Single-agent control:
finding optimal policy

Bandlt — MDP —— POI\/IDP — PSR

|
|
(Markov Decision Process)) (predictive state representations)

Controlled by multi-
agent
(two players, two

With state transition ,
actions, two rewards)

(from one matrix

____________ game toanother) Y
Multi-agent control: Matrix Markov
finding Nash equilibrium i Ggame Game |

- - - - - - - - - - - - - - ———

(also named “Stochastic Game”)

Matrix Game

* A set of players
* e.g., you (row player, player 1) and your opponent (column player, player 2)
* Each player chooses an action

* e.g., A =B = {rock,paper, scissor}, you choose a € A, your opponent choose
b €B

* Each player receives a reward

* e.g., when you choose a = rock and your opponent choose b = paper, you
receive reward -1 (lose) and your opponent receive 1 (win)

* More generally, when you choose a and your opponent choose b, you receive
R, (a, b) and your opponent receive R,(a, b)

e Zero-sum game: Ry(a,b) + R,(a,b) + - =0
* So we can use a single function R(a, b) to denote the reward in 2-player setting

Matrix Game: policy (strategy)

Your opponent’s action b

< Ri(a,b) | Rock Paper Scissor s
& | Rock 0 -1 1 S
< | Paper 1 0 -1 o
3 | Scissor -1 1 0 3
> >

Your reward

Here we have action a € A, what about the policy m(:) € A 47

Different from MDP, we don’t have state here.

Your opponent’s action b

R,(a,b) | Rock Paper Scissor
Rock 0 1 -1
Paper -1 0 1
Scissor 1 -1 0

* MDP: deterministic policy m: § = A or stochastic policy m: § = A4

* Matrix Game: pure strategy 1 € A, v € B or mixed strategy 1 € A4, v € Ag

E.Q.

Your opponent’s reward

A _4: Distribution (simplex) over
action set A. E.g., (0.3,0.3,0.4) €

A 4, which means you have
probability 0.3 to play rock or paper,
probability 0.4 to play scissor.

* Pure strategy: u = rock (you always play rock) V= paper (your opponent always play paper), R(i, v) = —1 (you always lose)
* Mixed strategy: 4 = (— =,0) (you pIay— rock, = paper) V= (O, 2,2 (your opponent pIay% paper, % SCISSOr)

Matrix Game: reward

Your opponent’s action b

< Ri(a,b) | Rock Paper Scissor
_5 Rock 0 -1 1

% Paper 1 0 -1

3 | Scissor -1 0

>_

Your reward

What about the reward r € R?

Different fromm MDP, we have separate rewards for each player.
Beside your action, your reward is also determined by what your opponent plays.

 MDP:r(s,a): §xXA—->R
 Matrix Game: Ry(a, b), R,(a,b): A X B = R (matrices R; € RI#XIBl
Expected reward for player i: fi(u, v) = Eqpy p~y[Ri (1, V)] = X p (@R (u, VIV(b) = u"Ryv

1

Your action a

Your opponent’s action b

R,(a,b) | Rock Paper Scissor

Rock 0 1 -1

Paper -1 0 1

Scissor 1 -1 0

Your opponent’s reward
0O -1 17710
[0.5 0.5 O][1 0 —1‘ 0.5‘ = —0.25

-1 1 0 110.5

A
[
I
[
I
[
I
[
I

E.g. Mixed strategy: 4 = (%,—, 0) (you play% rock, % paper), v = (0 221 (your opponent play% paper, % SCISSOr)

Your expected reward: Eq, p-y[R(1, V)] =

2

I

’272
1

X(_1)+%X1+ZXO+%X(_1):__

1
4

Matrix Game: best response

Your opponent’s action b

Your opponent’s action b

< Ri(a,b) | Rock Paper Scissor < R,(a,b) | Rock Paper Scissor
_5 Rock 0 -1 1 _5 Rock 0 1 -1

% Paper 1 0 -1 % Paper -1 0 1

a | Scissor -1 0 a | Scissor 1 -1 0

> >

Your reward Your opponent’s reward

What about the reward and the optimal policy m*?
In matrix game, our optimal policy (strategy) is relevant to the policy (strategy) of the opponent.
* MDP: optimal policy t* = arg max Eq-z[27¢] (the policy that maximize the cumulated reward)

* Matrix Game: best response for you u*(v) = arg mﬁlx Eq~up~v[R1(a, b)] (the strategy that maximize the
reward given v), best response for your opponent v*(u) = arg max Eq-pup~v[R2(a,b)]

E.Q.
* When your opponent play v = (1,0,0) (always play rock), your best response is v = (0,1,0) (always play paper)
so that Eq~p p~v[R(a, b)] = 1 is maximized.

Matrix Game: Nash equilibrium

Your opponent’s action b

Your opponent’s action b

< Ri(a,b) | Rock Paper Scissor < R,(a,b) | Rock Paper Scissor
_5 Rock 0 -1 1 _5 Rock 0 1 -1

& | Paper 1 0 -1 & | Paper -1 0 1

a | Scissor -1 0 a | Scissor 1 -1 0

> >

Your reward Your opponent’s reward

Is there some “optimal policy (strategy)” that does not depend on the opponent’s policy (strategy)?

A Nash Equilibrium is a strategy (i, v) such that neither player will gain anything by deviating from his own

strategy while the opposing player continues to play its current strategy.

Eg,.u=v= (%é,%) Is a Nash equilibrium (you cannot increase your expectation of reward if your opponent plays

rock, paper and scissor equality, vice versa.)

Theorem: Every game with a finite number of players and action profiles has at least one Nash equilibrium.
Complete Proof: https://www.cs.ubc.ca/~jilang/papers/NashReport.pdf

https://www.cs.ubc.ca/~jiang/papers/NashReport.pdf

Zero-sum, 2-player Nash equilibrium proof

* Let
F(,v) = Eqoppy [R(V)] = Xop (@R, v)v(b) = u"Rv
* be your expected reward (—f (u, v) for your opponent)

* In zero-sum, 2-player setting, a strategy pair (u*,v*) is a Nash equilibrium if
* Your expected reward f(u*,v*) = mﬁxf(u,v*)

* Your opponent’s expected reward —f (u*,v*) = max —f(uv)=f(u,v) < mvinf(u*,v)

* That Is, max —f (x) = — min f (x)

max f(u,v*) < f(u*,v*) <minf(u*,v) Vu,v € A4
U v

Which means
minmax f(u,v) < f(u*,v*) < maxmin f(u,v)
vV oou u v

min[max f (4, v)] < max f(, v*)

Zero-sum, 2-player Nash equilibrium proof

Lemma:

minmax f(a,b) = maxmin f(a, b)
b a a b

Proof:
f(a,b) = mbin f(a,b) Va,b

max f(a,b) = max mbin f(a,b) Vb
a a

minmax f(a,b) = maxmin f(a, b)
b a a b

Ref: Minimax theorem, game theory and Lagrange duality https://www.youtube.com/watch?v=MFEkxYuoFgw

https://www.youtube.com/watch?v=MFEkxYuoFqw

Zero-sum, 2-player Nash equilibrium proof

So, the existence of a Nash Equilibrium implies that
minmax f(u,v) = f(u*,v*) = maxmin f(u, v)
V U U Vv

Von Naumann’s minimax theorem: Let U,V be convex, compact sets, f: U XV »> R
IS @ convex-concave continuous function (meaning that f(u,+) is convex Vu and f (-
,V) Is concave Yv). Then
min max f (i, v) = maxmin f(u,v)
Vv U u vV

In our case, f(u,v) = u"Rv is bi-linear (convex-
concave), 4 € A4, v € Ag are simplex (convex)

Both the left and right side are constrained optimization problems
minmax ' Rv s.t. u € Ag4,v € Ag

T
maxminu'Rv s.t. u € A4,V € Ag
u v

Which can be transformed as Linear Programming models. By the duality
of Linear Programming, the equality also holds.

Finding Nash equilibrium

* (projected) gradient descent ascent
Xer1 = X¢ + N0 f (X¢, YVe)
YVt+1 = Yt — nayf(xt'yt)

Markov Games

Matrix Game with state and transitions.
* Each state s € § Is a Matrix game.
* P(s’|s,a, b) is the transition probability (with multiple actions)

* 13(s,a, b) is the reward of player i = 1,2 for Matrix Game s when player 1
plays a and player 2 plays b.

Policy:
* MDP: deterministic policy m: § = A or stochastic policy m: § = A4
* Matrix Game: pure strategy u € A,v € B or mixed strategy 4 € A4, v € Ag

* Markov Game: deterministic policy u: & = A,v:S — B or stochastic policy
,u:S — Adq,V:vS - AB

* very similar to MDP, but have multiple policies for multiple players

Markov Games

Lecture 3: MDP

Value function and expected reward for player i givenTa state s

H
Vi‘u’v (S) —]EI'L’V [Glt |St — S]; Glt — z Tl (S; a; b) Vii(s) =Ex {}Z} Th (8pry ans)|sp = s
k=t —

State-action value function for player i

Qi’u,v(s; a, b) —]E/,L,v[Git|St =S5, = Q, bt = b]
Bellman Equation for player i =

H
QZ(S: (L) - IEW[Z T’}'l/(Sh/, ah’>|5'h. = S,4p = (L]

Q#;V(S’ a, b) =T (S; a, b) +]ES’~P(’|S, a, b)ViH’v(S)

V) =) uls, @0 (s.a,b)v(s,b)

a€A,beB

Vi (s) =D nea QF (s, a)my,(als)
Qg(‘? a) =rn(s,a)+ IES’NPh('\s,a)%?—}—l(‘g,)

= u()T QM ()v(s)

Similarly, when we are in a zero-sum, 2-player setting, we can write (s, a, b) directly
without specifying the player.

Markov Games: best response & Nash
Cquilibrium

* |f the policy of your opponent v IS given, the I\/Iarkov Game becomes an
MDP with optimal policy u*(v) = argmax V""", which is called the best

response. Similarly, v*(u) = argmax V"

* For 2-player zero-sum game, VXV = —V*" (so we just write V"= V#V)
2 1 1

* |If (u*,v") is a Nash equilibrium, then

VAV =z max VY, —VFY 2 max—V* Y = VEY < minV# Y
max V#Y < VEYV < minV#* "V
U %

Like the case In Matrix Game, we have

min max V#Y = V# V' = maxmin V#*V
v U U v

Replace f(u,v) in Matrix Game
to cumulated reward V#V

Markov Game: finding Nash equilibrium

Lecture 3: MDP

Bellman Equation: V(s) = Y ,c4m(als) Q(s,a)

For all state s € S:
V(s) = négx Zaecfl 7T(Cl|S)Q(S, @), in which Q(s,a) = r(s,a) + Egr p(s'1s,0)V (87
ASTAW]

= max Q(s,a), since m(s) € A4, vector m will be a one-hot vector when (greedily) maximized
a

For a fixed opponent policy v, the Markov Game becomes an MDP, and we can find the best
response via value iteration above

Bellman Equation:V¥¥(s) = Xaeapen u(s,)Q*V(s,a,b)v(s,b) = Xgen i(s, a) [Xpep Q*¥ (s, a,b)v(s, b)]

For all state s € S:
VEY(s) = max Foepes H(S,)QHY (s, @, bIV(s, b)), inwhich 0 (s,a,b) = r(5,0,b) + Ey_p([s,a,)V (5)
HEA L ’ &

= max), Q*V(s,a,b)v(s,b)
acA

To find the Nash equilibrium, we use

For all state s € §;

V”V(S) — min max Z .U(S a)Q“V(S a, b)v(s b) For each state s € §, finding a Nash Equilibrium for the
veAg ued , “AEADLED Matrix Game with reward matrix Q#V(s) € RIAIXIB

Partially Observable MDP

* The state of many applications are not fully observable
* Poker (you don't know your opponent’s hand)
 StarCraft (fog)

* Need more general models to describe the problem

POMDP: adds observation O to the MDP formalization
* O(o]s): observation probability (under a state s, the possibility to observe o)
* r(0): reward is a function of observation.

observed

hidden > > /
control 0

"History™ and policy

Instead of state s, decisions Is based on the entire history
Tt = (011 a1, 02,02, ", 0¢—1, At—1, Ot)

Policy is a mapping from history to (distribution of) action, m(t) € A4
Bellman Equation

* V(1) = Xgeam(alt)Q™ (74, a)

* Q" (1, a) = Eo,, ~P(lrpay) [r(0¢41) + V({71 Aty 0441))]
Bellman Optimality Equation

* V(1) = max Q" (7, a)

* Q'(tpar) = Eo,, ~P(ltr,ar) [r(0r+1) + V({7 ar, 0041 D]

* Optimal Policy t*(z;) = arg max Q*(ts a)

Planning in POMDP In general cannot be done computational efficiently.

Belief states

observed

hidden

)\ 4
)\ 4
N

control

* History gives a distribution over s,

* If two histories generate the same belief states, then there should not be
difference in the future. (i.e., earlier view has redundancy)

* Belief state by € Ag Is a simplex (distribution) over all state §
* Policy m: As = A4 only needs to rely on sufficient statistics
* POMDP < belief-state MDP

Belief states

* Update on belief states: the probability of state s¢11 € S In beyq IS
P(St+1,0t+1]at, by)

P(0¢41la, be)
So by is a function of by, ag, 041 (ber1 = f(bg, ¢, 0¢41))
* Bellman Equation
* V*(b) = Xaeam(alb)Q™ (b, a)
* Q" (b, ap) = Eo,, . ~P(|bsap) [r(0r41) + V(S (b, Aty 0441))]
* In general, V*(b) is not a linear function in b
 Still iIn general computationally intractable

ber1(Ses1) =

Predictive State Representation

observed F . .
> & &

e State Is not a must In dynamic systems

* In practical applications, there may or may not exist interpretable hidden states. They
may not be unique, nor “Intrinsic”

* Define atestt = (a',0t,-++,a’, 0%) of length k
* System-dynamics vector:
p(t) = Pr(o, = 0%, -, 0, = 0|la; = a*, -+, a, = a”)

* Once we know system dynamics vector, we know everything about the
dynamic system

control

System-dynamic Matrix

p(t) = Pr(o; = 0%, -++,0, = 0%|la; = a, -, a, = a”)
* [t will be easler to see the structure in matrix form
e Testt = (at,0t,---,a", 0"), history h = (a,04,+,a;,0;)
p(t|h) = Pr(o;41 = o', 014k = 0 |happq = a', Qe = ak) Concatenate
h and t

ht
to’ , tl’ P(tlh) :p()
Empty p(h)
set @ —1>hy System-dynamic matrix can be computed by system-dynamic
vector

For POMDP with |S| hidden states, rank(SD matrix) < |S|
Proof. p(t|h) = Y. p(t|s)p(s|h) = b[h]Tu, (s-dimensional inner
product)

P(t;|h;)

Fact: There exists dynamic system whose rank(SD matrix) = 3,
but cannot be represented by any finite POMDP

Core test Q and Predictive State
Representation Y (h)

* 0 =1{q1,"",qx}, k columns of SD matrix, full column rank

* Y(h) = [p(q1lh), -, p(qr|M)]
* Then p(tlh) = m{yP(h)
* Predicting a new column t using core set.
* Linear coefficient m; should not depends on h

* Y(h) is called Predictive State Representation of h
* A sufficient statistic, similar to the role of belief state

