
An Introduction of Model-based RL

Xihan Li

University College London

Apr 23, 2021

Table of Contents

Basic Concepts: Model and Planning

Background Planning
Simulated Environment: Dyna-Q
Assist Learning Algorithm: Policy Backprop

Model-free vs Model-based RL [2]

Collecting data: D = {st , at , rt+1, st+1}Tt=0

I Model-free: learn policy directly from data
D → π, e.g. Q-learning, policy gradient

I Model-based: learn model, then use it to learn or improve a
policy
D → f → π

Table of Contents

Basic Concepts: Model and Planning

Background Planning
Simulated Environment: Dyna-Q
Assist Learning Algorithm: Policy Backprop

What is a model (of environment)

(A model) is something that mimics the behavior of the
environment, or more generally, that allows inferences to be made
about how the environment will behave. For example, given a state
and action, the model might predict the resultant next state and
next reward. [3, page 7]

Recap the definition of MDP {S,A, T ,R, γ}
I Set of states st ∈ S
I Set of actions at ∈ A
I Transition function T : S ×A → prob(S), st+1 ∼ T (·|st , at)

(prob(S) is the distribution over S)

I Reward function R : S ×A× S → R, rt = R(st , at , st+1)
(or R : S ×A → R)

I Discount factor γ

Type of model

By direction [1]:

I Forward model: (st , at)→ st+1.
(Typical meaning of a model in model-based RL)

I Backward/reverse model: st+1 → (st , at)
(used in prioriorized sweeping discussed later)

I Inverse model: (st , st+1)→ at

By output type [3, page 159]:

I Distribution model: Given a state and an action, produce a
probability distribution of all next states.

I Sample model: Given a state and an action, produce one next
state sampled from the probability distribution.

By ways to obtain

I Known model (e.g., AlphaGo Zero)

I Learned model (e.g., Dyna)

Why to learn a model

I Planning with real robots (too expensive, too risky)

I Simulating complex physical dynamics (too expensive)

I Interactions with humans (no access)

I

What is planning

Models are used for planning, by which we mean any way of
deciding on a course of action by considering possible future
situations before they are actually experienced. [3, page 7]

The opposite of explicitly trial-and-error learners.

Planning vs Learning [3, page 161]

I Common: the estimation of value functions (by backing-up
update operations1)

I Difference:
I Planning: simulated experience generated by a model
I Learning: real experience generated by the environment

1i.e., the current value of the earlier state is updated to be closer to the
value of the later state [3, page 9]

Example: Q-planning vs Q-learning

(Random-sample) Q-planning [3, page 161]:
Loop forever:
I Select a state, s ∈ S, and an action, a ∈ A, at random

I Send s, a to a sample model, and obtain
a sample next reward, r , and a sample next state, s ′

I Apply one-step tabular Q-learning to (s, a, r , s ′):
Q(s, a)← Q(s, a) + α[r + maxa′ Q(s ′, a′)− Q(s, a)]

Q-learning [3, page 131]:
Loop for each episode:
I Initialize s

I Loop for each step of episode:
I Choose a from s using policy derived from Q (e.g., ε-greedy)
I Take action a, observe r , s ′

I Q(s, a)← Q(s, a) + α[r + γmaxa′ Q(s ′, a′)− Q(s, a)]
I s ← s ′

I until s is terminal

Type of planning [3, page 180]

I Background planning (e.g., Dyna-Q)
I Gradually improve a policy or value function on the basis of

simulated experience obtained from a model. (e.g.,
Q-planning)

I Selecting actions is then a matter of comparing the current
state’s action values.

I Planning is not focused on the current state.

I Decision-time planning (e.g., Heuristic Search)
I Given st , output is the selection of a single action at .
I Can look much deeper than one-step-ahead.
I Focuses on a particular state.
I Can act without any learning.

Type of planning [2]

Time of Planning

Decision-time Planning Background Planning

Continuous
Action

iLQR

DDP

Pi2

Direct collocation

STOMP

Discrete
Action

Heuristic Search

MCTS
AlphaGo Zero
(Nature, 2017)

Simulated
Environment

Dyna (1990)

MVE (ICML 2018)

MBPO
(NeurIPS 2019)

Assist Learning
Algorithm

Policy Backprop

SVG (NeurIPS 2015)

Dreamer (ICLR 2020)

PILCO (ICML 2011)

Table of Contents

Basic Concepts: Model and Planning

Background Planning
Simulated Environment: Dyna-Q
Assist Learning Algorithm: Policy Backprop

Simulated Environment vs. Assist Learning Algorithm2

I Simulated Environment (Dyna-type, black-box model)
I First, using the current policy, data is gathered from

interaction with the environment and then used to learn the
dynamics model.

I Second, the policy is improved with imagined data generated
by the learned model.

I Learn policies using model-free algorithms with rich imaginary
experience without interaction with the real environment.

I Assist Learning Algorithm (policy search with backpropagation
through time, white-box model)
I Model is smooth and differentiable.

E.g., for st+1 = fs(st , at), we can have ∂st+1

∂st
and ∂st+1

∂at
I Compute the analytic gradient of the RL objective with respect

to the policy, and improve the policy accordingly.

2http://www.cs.toronto.edu/~tingwuwang/mbrl.html,
https://rlchina.org/lectures/lecture4.pdf

http://www.cs.toronto.edu/~tingwuwang/mbrl.html
https://rlchina.org/lectures/lecture4.pdf

Simulated Environment: Dyna-Q3

Dyna-Q: Q-learning + Model learning + Q-planning
Value / Policy

Experience

Model

action

d
ir

ec
t

R
L

model learning

planning

Loop for each episode:
I Initialize s

I Loop for each step of episode:
I Choose a from s using policy derived from Q (e.g., ε-greedy)
I Take action a, observe r , s ′ ← interact with env (learning)
I Q(s, a)← Q(s, a) + α[r + γmaxa′ Q(s ′, a′)− Q(s, a)]
I Model(s, a)← r , s ′ ← model learning
I Loop repeat n times

I s, a← random previously experienced state-action pair
I r , s ′ ← Model(s, a) ← interact with model (planning)
I Q(s, a)← Q(s, a) + α[r + γmaxa′ Q(s ′, a′)− Q(s, a)]

I s ← s ′

I until s is terminal

3Sutton (1990). Dyna, an integrated architecture for learning, planning, and
reacting.

Why agent with planning can be better

S

G

at the middle of the 2th episode

No planning (n = 0)

S

G�
↑

Only learn once at the end of 1th
episode.

With planning (n = 50)

S

G

�

↑
↑
↑
↑

↑↑↑
↑

→→→→→
→→→

→ →
→
→→→

→ →→ ←

↓
↓
↓

↓↓
↓

↓↓

An extensive policy has been developed
during the second episode via

interacting with model.

Prioritized Sweeping

Recap the Q-planning procedure in Dyna-Q

Loop repeat n times

I s, a← random previously experienced state-action pair

I r , s ′ ← Model(s, a) ← interact with model (planning)

I Q(s, a)← Q(s, a) + α[r + γmaxa′ Q(s ′, a′)− Q(s, a)]

Random sampling may not be the best.

I Consider the maze example before. At the beginning of the
second episode, only the state–action pair leading directly into
the goal ((9, 5), ↑) has a positive value (Q((9, 5), ↑) > 0).

I If we randomly select (s, a) from previously experienced
state-action pair, and obtain simulated r , s ′ from the model.
Q(s, a) and Q(s ′, a′) will be both zero most of the time.

Prioritized Sweeping
Loop for each episode:
I Initialize s

I Loop for each step of episode:
I Choose a from s using policy derived from Q (e.g., ε-greedy)
I Take action a, observe r , s ′ ← interact with env (learning)
I Q(s, a)← Q(s, a) + α[r + γmaxa′ Q(s ′, a′)− Q(s, a)]
I P ← |r + γmaxa′ Q(s ′, a′)− Q(s, a)| ← priority
I if P > θ, then insert s, a into PQueue with priority P
I Model(s, a)← r , s ′ ← model learning
I Loop repeat n times

I s, a← first(PQueue) ← high priority pair first
I r , s ′ ← Model(s, a) ← interact with model (planning)
I Q(s, a)← Q(s, a) + α[r + γmaxa′ Q(s ′, a′)− Q(s, a)]
I Loop for all (s̄, ā) predicted to lead to s: ← backward model

1. r̄ ← predicted reward of s̄, ā, s
2. P ← |r̄ + γmaxa′ Q(s, a′)− Q(s̄, ā)|
3. if P > θ, then insert s̄, ā into PQueue with priority P

I s ← s ′

I until s is terminal

Simulated Environment: Other Influential Algorithms

I (MVE) Model-Based Value Estimation for Efficient
Model-Free Reinforcement Learning (ICML 2018) 4

I Only allow model imagination to fixed depth.
I Use learned model for short-term horizon, use traditional

Q-learning for long-term horizon.

T = r +
H∑
i=1

(γ i r̂(si−1, ai−1, si))︸ ︷︷ ︸
use learned model to rollout H steps

+γH+1Q(sH , aH)

(H = 0 will be the tranditional TD error)
I Incorporating the model into Q-value target estimation.

I (MBPO) When to Trust Your Model: Model-Based Policy
Optimization (NeurIPS 2019)

4https://zhuanlan.zhihu.com/p/102197348

https://zhuanlan.zhihu.com/p/102197348

Assist Learning Algorithm: Policy Backprop [2]

(smooth) models offer derivatives.
From st+1 = fs(st , at) and rt = fr (st , at) we can have

∂st+1

∂st
,
∂st+1

∂at
,
∂rt
∂st

,
∂rt
∂at

i.e. “how do small changes in action change next state?”

J(θ) =
H∑
t=0

γtrt , at = πθ(st), st+1 = fs(st , at), rt = fr (st , at)

∂J(θ)

∂θ
=

H∑
t=0

γt
∂rt
∂θ

=
H∑
t=0

γt
∂fr (st , at)

∂θ
(rt = fr (st , at))

=
H∑
t=0

γt(
∂fr (st , at)

∂st

∂st
∂θ

+
∂fr (st , at)

∂at

∂πθ(st)

∂θ
) (at = πθ(st))

Assist Learning Algorithm: Policy Backprop

J(θ) =
H∑
t=0

γt(
∂fr (st , at)

∂st

∂st
∂θ

+
∂fr (st , at)

∂at

∂πθ(st)

∂θ
)

∂st
∂θ

=
∂fs(st−1, at−1)

∂θ

=
∂fs(st−1, at−1)

∂st−1

∂st−1

∂θ
+
∂fs(st−1, at−1)

∂at−1

∂πθ(st−1)

∂θ

Calculated recursively backwards in time (i.e. RNNs)

Assist Learning Algorithm: Other Influential Algorithms

I PILCO: A Model-Based and Data-Efficient Approach to Policy
Search (ICML 2011) 5

I Use Gaussian Process to model dynamic system
xt = f (xt−1, ut−1), i.e., p(xt |xt−1, ut−1) = N (µt ,Σt)

I Use learned model to approximate
V π(x0) =

∑T
t=0

∫
c(xt)p(xt)dxt

I Gradient back-propagate to update π, minπ∈Π V πθ (x0)
I Very high data efficiency (only 7-8 episodes for CartPole)

I (SVG) Learning Continuous Control Policies by Stochastic
Value Gradients (NeurIPS 2015)

I (Dreamer) Dream to Control: Learning Behaviors by Latent
Imagination (ICLR 2020 Spotlight)

5https://zhuanlan.zhihu.com/p/138337983,
https://zhuanlan.zhihu.com/p/27537744

https://zhuanlan.zhihu.com/p/138337983
https://zhuanlan.zhihu.com/p/27537744

References I

Thomas M. Moerland, Joost Broekens, and Catholijn M.
Jonker.
Model-based Reinforcement Learning: A Survey.
arXiv:2006.16712 [cs, stat], July 2020.
arXiv: 2006.16712.

Igor Mordatch and Jessica Hamrick.
Tutorial on Model-Based Methods in Reinforcement Learning.
https://sites.google.com/view/mbrl-tutorial.

Richard S. Sutton and Andrew G. Barto.
Reinforcement learning: an introduction.
Adaptive computation and machine learning series. The MIT
Press, Cambridge, Massachusetts, second edition edition, 2018.

https://sites.google.com/view/mbrl-tutorial

	Basic Concepts: Model and Planning
	Background Planning
	Simulated Environment: Dyna-Q
	Assist Learning Algorithm: Policy Backprop

