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Mathematical Optimization:
Booster of Global Economy
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Mathematical optimization pipeline for 
practical business decision making scenarios

min 𝑓 𝒙
𝑠. 𝑡. 𝑨𝒙 = 𝒃

𝒙 ≥ 0

Data integration

Business 
Data

Mathematical 
Optimization Model

Modeling Solving

Business Decision
(such as production 

order)

𝑥1 = 1
𝑥2 = 2

.......

Solution

Algebraic Modeling System 
(AMS)

Real business scenarios

Massive 
data

Huge model with 
millions of variables



Huawei’s Supply Chain Scenario:
Supply-Demand Analysis
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1. Efficient modeling: A fast algorithm to instantiate millions of 
linear constraints in optimization

min 𝑓 𝒙
𝑠. 𝑡. 𝑨𝒙 = 𝒃

𝒙 ≥ 0
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A simple mathematical optimization example:
balance constraint of network flow model
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𝑉 = 1, 2, 3, 4

𝐸 =

(1, 2)
(1, 3)
(2, 4)
(3, 2)
(3, 4)

𝑆 = [1,0,0, −1]
𝑥1,3

𝑥3,2

𝑥2,4

𝑥3,4

𝑥1,2

constraint i:෍
𝑖,𝑗 ∈𝐸

𝑥𝑖,𝑗 −෍
𝑗,𝑖 ∈𝐸

𝑥𝑗,𝑖 = 𝑠𝑖 , ∀𝑖 ∈ 𝑉

i = 1, iterate through all 1, 𝑗 ∈ 𝐸 and 𝑖, 1 ∈ 𝐸
constraint 1: 𝑥1,2 + 𝑥1,3 = 1

i = 2, iterate through all 2, 𝑗 ∈ 𝐸 and 𝑖, 2 ∈ 𝐸
constraint 2: 𝑥2,4 − 𝑥1,2 − 𝑥3,2 = 0

i = 3, iterate through all 3, 𝑗 ∈ 𝐸 and 𝑖, 3 ∈ 𝐸
constraint 3: 𝑥3,2 + 𝑥3,4 − 𝑥1,3 = 0

i = 4, iterate through all 4, 𝑗 ∈ 𝐸 and 𝑖, 4 ∈ 𝐸
constraint 4: −𝑥2,4 − 𝑥3,4 = −1

𝑶 𝑽 𝑬 time complexity!
Cannot work when we have millions of 
vertices and edges

Iterate through all 𝑖 ∈ 𝑉



Efficient Model Instantiation
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constraint i: +෍
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𝑥𝑖,𝑗 −෍
𝑗,𝑖 ∈𝐸

𝑥𝑗,𝑖 = 𝑠𝑖 , ∀𝑖 ∈ 𝑉

• constraint 1: +𝑥1,2 + 𝑥1,3 = 1
• constraint 2: +𝑥2,4 − 𝑥1,2 − 𝑥3,2 = 0

• constraint 3: +𝑥3,2 + 𝑥3,4 − 𝑥1,3 = 0
• constraint 4: −𝑥2,4 − 𝑥3,4 = −1



Efficient Model Instantiation

1

2

3

4

𝑉 = 1, 2, 3, 4

𝐸 =

(1, 2)
(1, 3)
(2, 4)
(3, 2)
(3, 4)

𝑆 = [1,0,0, −1]

𝑥1,3

𝑥3,2

𝑥2,4

𝑥3,4

𝑥1,2

constraint i: +෍
𝒊,𝑗 ∈𝐸

𝑥𝒊,𝑗 −෍
𝑗,𝒊 ∈𝐸

𝑥𝑗,𝒊 = 𝑠𝑖 , ∀𝑖 ∈ 𝑉

+𝑥1,2 +𝑥1,3 +𝑥2,4 +𝑥3,2 +𝑥3,4

−𝑥1,2 −𝑥1,3 −𝑥2,4 −𝑥3,2 −𝑥3,4

+𝑥1,2 +𝑥1,3

+𝑥2,4

+𝑥3,2 +𝑥3,4

−𝑥1,2

−𝑥1,3

−𝑥2,4

−𝑥3,2

−𝑥3,4

constraint 1:

constraint 2:

constraint 3:

constraint 4:

= 1

= 0

= 0

= −1

+෍
𝒊,𝑗 ∈𝐸

𝑥𝒊,𝑗

−෍
𝑗,𝒊 ∈𝐸

𝑥𝑗,𝒊

𝑶 𝑬 time complexity!



Parallelization of the model instantiation 
algorithm
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Parallelization of the model instantiation 
algorithm
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Offline benchmark result

6-10x speedup over leading 
commercial modeling 
software in multi-thread 
setting



2. Efficient solving: sequential decomposition of large-scale 
business optimization model
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Why business optimization models are so 
large?
• Sequential, dynamic decision making
• The number of variables are in direct proportion to the decision horizons 𝑇

• E.g., when we have 10K decision variable in a single period, we will need 10K * 100 = 
1M variables for 100 periods (𝑇 = 100)

• Can we partition the periods (rolling horizon)?
• Yes, but the decision will be very short-sighted, thus global optimality will be lost



Forward Rolling Horizon

• Divide the model into h sub-
models

• Add “aggregated information” to 
the end of the sub-model.
• E.g., when we solve the sub-

problem in 1-4 period, we 
aggregate the information in 5-16 
period into 1 period, and attach it 
to the end of the sub-problem as a 
“virtual” period 5.

Aggregated info as a 
“virtual” period 5



Our Proposed Method: Guided Rolling 
Horizon
• First, aggregate all data into h 

periods

• Then, solve a “master problem” 
of h periods with aggregated 
data

• Finally, solve h sub-problems 
sequentially. Add a soft 
constraint that the sub-problem 
should be aligned with the 
master problem as much as 
possible.



Guided Forward Rolling Horizon

• Forward Rolling Horizon + 
Guided Rolling Horizon



Fine-tuning of approximated solutions

• In reality, we are more 
concerned about the decision 
variables in first several periods, 
since they need to be executed 
soon.

• When we have an approximated
feasible solution, we can
“release” the variables in first 
several periods and fix the 
others, and re-optimize the 
model in the full horizon.



Online experiments on Huawei supply chain 
scenario

20x speed acceleration (4000s → 200s) 
with optimality loss of only 3.6‰

The optimality loss can be further reduced 
to 3.3‰ with fine-tuning



Grassland in business practice

• Cooperated with Huawei Cloud, 
Grassland will be integrated as 
the default modeling system of 
Huawei OptVerse AI Solver
• https://www.huaweicloud.com/pr

oduct/modelarts/optverse.html

https://www.huaweicloud.com/product/modelarts/optverse.html
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