Grassland: A Rapid Algebraic Modeling System for Million-variable Optimization

Xihan Li¹, Xiongwei Han², Zhishuo Zhou³, Mingxuan Yuan², Jia Zeng² and Jun Wang¹ ¹University College London ²Huawei Noah's Ark Lab ³Fudan University

> Speaker: Xihan Li CIKM 2021

Mathematical Optimization: Booster of Global Economy

Manufacturing

Energy

Transportation

Logistics

Mathematical optimization pipeline for practical business decision making scenarios

Huawei's Supply Chain Scenario: Supply-Demand Analysis

Real business scenarios

1. Efficient modeling: A fast algorithm to instantiate millions of linear constraints in optimization

A simple mathematical optimization example: balance constraint of network flow model

constraint i:
$$\sum_{(i,j)\in E} x_{i,j} - \sum_{(j,i)\in E} x_{j,i} = s_i, \forall i \in V$$

Iterate through all $i \in V$

i = 1, iterate through all $(1, j) \in E$ and $(i, 1) \in E$ constraint 1: $x_{1,2} + x_{1,3} = 1$

i = 2, iterate through all $(2, j) \in E$ and $(i, 2) \in E$ constraint 2: $x_{2,4} - x_{1,2} - x_{3,2} = 0$

i = 3, iterate through all $(3, j) \in E$ and $(i, 3) \in E$ constraint 3: $x_{3,2} + x_{3,4} - x_{1,3} = 0$

i = 4, iterate through all $(4, j) \in E$ and $(i, 4) \in E$ constraint 4: $-x_{2,4} - x_{3,4} = -1$

O(|**V**||**E**|) time complexity! Cannot work when we have millions of vertices and edges

≜UCL

Efficient Model Instantiation

constraint i:
$$+\sum_{(i,j)\in E} x_{i,j} - \sum_{(j,i)\in E} x_{j,i} = s_i, \forall i \in V$$

- constraint 1: $+x_{1,2} + x_{1,3} = 1$
- constraint 2: $+x_{2,4} x_{1,2} x_{3,2} = 0$
- constraint 3: $+x_{3,2} + x_{3,4} x_{1,3} = 0$
- constraint 4: $-x_{2,4} x_{3,4} = -1$

Efficient Model Instantiation

constraint i:
$$+\sum_{(i,j)\in E} x_{i,j} - \sum_{(j,i)\in E} x_{j,i} = s_i, \forall i \in V$$

O(|**E**|) time complexity!

Parallelization of the model instantiation algorithm

 $V = \{1, 2, 3, 4\}$ $E = \begin{bmatrix} (1, 2) \\ (1, 3) \\ (2, 4) \\ (3, 2) \\ (3, 4) \end{bmatrix}$ S = [1, 0, 0, -1]

constraint i:
$$+\sum_{\substack{(i,j)\in E}} x_{i,j} - \sum_{\substack{(j,i)\in E}} x_{j,i} = s_i, \forall i \in V$$

$$E_{out} = \begin{bmatrix} (1, 2) \\ (1, 3) \\ (2, 4) \\ (3, 2) \\ (3, 4) \end{bmatrix}, E_{in} = \begin{bmatrix} (1, 2) \\ (1, 3) \\ (2, 4) \\ (3, 4) \end{bmatrix}$$
Data partition
(2, 4) \\ (3, 4) \end{bmatrix}
CPU 1: $E_{out}^1 = \begin{bmatrix} (1, 2) \\ (1, 3) \\ (2, 4) \\ (3, 4) \end{bmatrix}, E_{in}^1 = \begin{bmatrix} (1, 2) \\ (3, 2) \\ (3, 2) \end{bmatrix}$
CPU 2: $E_{out}^2 = \begin{bmatrix} (3, 2) \\ (3, 4) \end{bmatrix}, E_{in}^2 = \begin{bmatrix} (1, 3) \\ (2, 4) \\ (3, 4) \end{bmatrix}$

Parallelization of the model instantiation algorithm

 $V = \{1, 2, 3, 4\}$ $E = \begin{bmatrix} (1, 2) \\ (1, 3) \\ (2, 4) \\ (3, 2) \\ (3, 4) \end{bmatrix}$ S = [1, 0, 0, -1]

Offline benchmark result

	P-Median	Offshore	Food
		Wind Farming	Manufacture I
Gurobi Py API	410.20	533.71	744.39
JuMP	278.08	169.08	789.86
ZIMPL	174.00	400.47	399.16
AMPL	15.94	17.71	31.65
Grassland (S)	35.91	18.85	80.83
Grassland (M)	2.09	1.67	5.28

Table 1: Model Instantiation Benchmark. Total time (in seconds) to process the model definition and produce the output file in CPLEX LP format. 6-10x speedup over leading commercial modeling software in multi-thread setting

Figure 6: Offline model instantiation benchmark on (a) P-Median (b) Offshore Wind Farming (c) Food Manufacture I.

Real business scenarios

2. Efficient solving: sequential decomposition of large-scale business optimization model

Why business optimization models are so large?

- Sequential, dynamic decision making
- The number of variables are in direct proportion to the decision horizons T
 - E.g., when we have 10K decision variable in a single period, we will need 10K * 100 = 1M variables for 100 periods (T = 100)
- Can we partition the periods (rolling horizon)?
 - Yes, but the decision will be very short-sighted, thus global optimality will be lost

$$\mathbf{A}_{1}\mathbf{x}_{1}^{T} = \mathbf{b}_{1}$$
$$\mathbf{A}_{2}[\mathbf{x}_{1}, \mathbf{x}_{2}]^{T} = \mathbf{b}_{2}$$
$$\cdots$$
$$\mathbf{A}_{T}[\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{T}]^{T} = \mathbf{b}_{T}$$

Forward Rolling Horizon

- Divide the model into h submodels
- Add "aggregated information" to the end of the sub-model.
 - E.g., when we solve the subproblem in 1-4 period, we aggregate the information in 5-16 period into 1 period, and attach it to the end of the sub-problem as a "virtual" period 5.

(a) Forward RH (FRH), [8]

Our Proposed Method: Guided Rolling Horizon

- First, aggregate all data into h periods
- Then, solve a "master problem" of h periods with aggregated data
- Finally, solve h sub-problems sequentially. Add a soft constraint that the sub-problem should be aligned with the master problem as much as possible.

(b) Guided RH

Guided Forward Rolling Horizon

• Forward Rolling Horizon + Guided Rolling Horizon

(c) Guided FRH

Fine-tuning of approximated solutions

- In reality, we are more concerned about the decision variables in first several periods, since they need to be executed soon.
- When we have an approximated feasible solution, we can "release" the variables in first several periods and fix the others, and re-optimize the model in the full horizon.

Figure 5: The fine-tuning procedure. The grey variables are fixed while the green variables are to be re-optimized. State variables whose value are determined by other variables keep free in the whole sequence.

Online experiments on Huawei supply chain scenario

20x speed acceleration (4000s \rightarrow 200s) with optimality loss of only 3.6‰

The optimality loss can be further reduced to 3.3‰ with fine-tuning

Grassland in business practice

- Cooperated with Huawei Cloud, Grassland will be integrated as the default modeling system of Huawei OptVerse Al Solver
 - <u>https://www.huaweicloud.com/pr</u> oduct/modelarts/optverse.html

Thank you!

Xihan Li Department of Computer Science, University College London <u>xihan.li@cs.ucl.ac.uk</u> https://snowkylin.github.io

