
Grassland: A Rapid Algebraic Modeling System  
for Million-variable Optimization

Xihan Li1, Xiongwei Han2, Zhishuo Zhou3, Mingxuan Yuan2 , Jia Zeng2 and Jun Wang1

1University College London 
2Huawei Noah’s Ark Lab

3Fudan University

Speaker: Xihan Li

CIKM 2021



Mathematical Optimization:
Booster of Global Economy

Manufacturing

Transportation

Energy

Logistics



Mathematical optimization pipeline for 
practical business decision making scenarios

min 𝑓 𝒙
𝑠. 𝑡. 𝑨𝒙 = 𝒃

𝒙 ≥ 0

Data integration

Business 
Data

Mathematical 
Optimization Model

Modeling Solving

Business Decision
(such as production 

order)

𝑥1 = 1
𝑥2 = 2

.......

Solution

Algebraic Modeling System 
(AMS)

Real business scenarios

Massive 
data

Huge model with 
millions of variables



Huawei’s Supply Chain Scenario:
Supply-Demand Analysis

Demand Products 
(10K+)

Key Products 
(10K+)

Semi-Finished 
Products (50K+)

Complex 
BOM
Relationship

Demand
~106

Supply
~105

Complex business 
rules like replacement 
and priority

Supply-Demand 
Analysis 

(modeling and solving 
of mathematical 

optimization models 
with millions of 

variables, has to be 
completed in minutes)

Sudden change 
of supply and 
demand

Final Decisions
Purchase
Produce

Transport
Replacement

……

Assist

• Demand fulfillment ratio
• Bottleneck products/raw 

materials
• ……



1. Efficient modeling: A fast algorithm to instantiate millions of 
linear constraints in optimization

min 𝑓 𝒙
𝑠. 𝑡. 𝑨𝒙 = 𝒃

𝒙 ≥ 0

Data integration

Business 
Data

Mathematical 
Optimization Model

Modeling Solving

Business Decision
(such as production 

order)

𝑥1 = 1
𝑥2 = 2

.......

Solution

Algebraic Modeling System 
(AMS)

Real business scenarios

How to do this 
efficiently?



A simple mathematical optimization example:
balance constraint of network flow model

1

2

3

4

𝑉 = 1, 2, 3, 4

𝐸 =

(1, 2)
(1, 3)
(2, 4)
(3, 2)
(3, 4)

𝑆 = [1,0,0, −1]
𝑥1,3

𝑥3,2

𝑥2,4

𝑥3,4

𝑥1,2

constraint i:෍
𝑖,𝑗 ∈𝐸

𝑥𝑖,𝑗 −෍
𝑗,𝑖 ∈𝐸

𝑥𝑗,𝑖 = 𝑠𝑖 , ∀𝑖 ∈ 𝑉

i = 1, iterate through all 1, 𝑗 ∈ 𝐸 and 𝑖, 1 ∈ 𝐸
constraint 1: 𝑥1,2 + 𝑥1,3 = 1

i = 2, iterate through all 2, 𝑗 ∈ 𝐸 and 𝑖, 2 ∈ 𝐸
constraint 2: 𝑥2,4 − 𝑥1,2 − 𝑥3,2 = 0

i = 3, iterate through all 3, 𝑗 ∈ 𝐸 and 𝑖, 3 ∈ 𝐸
constraint 3: 𝑥3,2 + 𝑥3,4 − 𝑥1,3 = 0

i = 4, iterate through all 4, 𝑗 ∈ 𝐸 and 𝑖, 4 ∈ 𝐸
constraint 4: −𝑥2,4 − 𝑥3,4 = −1

𝑶 𝑽 𝑬 time complexity!
Cannot work when we have millions of 
vertices and edges

Iterate through all 𝑖 ∈ 𝑉



Efficient Model Instantiation

1

2

3

4

𝑉 = 1, 2, 3, 4

𝐸 =

(1, 2)
(1, 3)
(2, 4)
(3, 2)
(3, 4)

𝑆 = [1,0,0, −1]
𝑥1,3

𝑥3,2

𝑥2,4

𝑥3,4

𝑥1,2

constraint i: +෍
𝑖,𝑗 ∈𝐸

𝑥𝑖,𝑗 −෍
𝑗,𝑖 ∈𝐸

𝑥𝑗,𝑖 = 𝑠𝑖 , ∀𝑖 ∈ 𝑉

• constraint 1: +𝑥1,2 + 𝑥1,3 = 1
• constraint 2: +𝑥2,4 − 𝑥1,2 − 𝑥3,2 = 0

• constraint 3: +𝑥3,2 + 𝑥3,4 − 𝑥1,3 = 0
• constraint 4: −𝑥2,4 − 𝑥3,4 = −1



Efficient Model Instantiation

1

2

3

4

𝑉 = 1, 2, 3, 4

𝐸 =

(1, 2)
(1, 3)
(2, 4)
(3, 2)
(3, 4)

𝑆 = [1,0,0, −1]

𝑥1,3

𝑥3,2

𝑥2,4

𝑥3,4

𝑥1,2

constraint i: +෍
𝒊,𝑗 ∈𝐸

𝑥𝒊,𝑗 −෍
𝑗,𝒊 ∈𝐸

𝑥𝑗,𝒊 = 𝑠𝑖 , ∀𝑖 ∈ 𝑉

+𝑥1,2 +𝑥1,3 +𝑥2,4 +𝑥3,2 +𝑥3,4

−𝑥1,2 −𝑥1,3 −𝑥2,4 −𝑥3,2 −𝑥3,4

+𝑥1,2 +𝑥1,3

+𝑥2,4

+𝑥3,2 +𝑥3,4

−𝑥1,2

−𝑥1,3

−𝑥2,4

−𝑥3,2

−𝑥3,4

constraint 1:

constraint 2:

constraint 3:

constraint 4:

= 1

= 0

= 0

= −1

+෍
𝒊,𝑗 ∈𝐸

𝑥𝒊,𝑗

−෍
𝑗,𝒊 ∈𝐸

𝑥𝑗,𝒊

𝑶 𝑬 time complexity!



Parallelization of the model instantiation 
algorithm

1

2

3

4

𝑉 = 1, 2, 3, 4

𝐸 =

(1, 2)
(1, 3)
(2, 4)
(3, 2)
(3, 4)

𝑆 = [1,0,0, −1]

𝑥1,3

𝑥3,2

𝑥2,4

𝑥3,4

𝑥1,2

constraint i: +෍
𝒊,𝑗 ∈𝐸

𝑥𝒊,𝑗 −෍
𝑗,𝒊 ∈𝐸

𝑥𝑗,𝒊 = 𝑠𝑖 , ∀𝑖 ∈ 𝑉

𝐸𝑜𝑢𝑡 =

1 2
1 3
2 4
3 2
3 4

, 𝐸𝑖𝑛 =

1 2
3 2
1 3
2 4
3 4

CPU 1: 𝐸𝑜𝑢𝑡
1 =

1 2
1 3
2 4

, 𝐸𝑖𝑛
1 =

1 2
3 2

CPU 2: 𝐸𝑜𝑢𝑡
2 =

3 2
3 4

, 𝐸𝑖𝑛
2 =

1 3
2 4
3 4

Data partition



Parallelization of the model instantiation 
algorithm

1

2

3

4

𝑉 = 1, 2, 3, 4

𝐸 =

(1, 2)
(1, 3)
(2, 4)
(3, 2)
(3, 4)

𝑆 = [1,0,0, −1]

𝑥1,3

𝑥3,2

𝑥2,4

𝑥3,4

𝑥1,2

+𝑥1,2 +𝑥1,3 +𝑥2,4 +𝑥3,2 +𝑥3,4

−𝑥1,2 −𝑥3,2 −𝑥1,3 −𝑥2,4 −𝑥3,4

CPU 1 CPU 2

+𝑥1,2 +𝑥1,3

+𝑥2,4

+𝑥3,2 +𝑥3,4

−𝑥1,2

−𝑥1,3

−𝑥2,4−𝑥3,2 −𝑥3,4

c1:

c2:

c3:

c4:

= 1

= 0

= 0

= −1

CPU 1 CPU 2

constraint i: +෍
𝒊,𝑗 ∈𝐸

𝑥𝒊,𝑗 −෍
𝑗,𝒊 ∈𝐸

𝑥𝑗,𝒊 = 𝑠𝑖 , ∀𝑖 ∈ 𝑉



Offline benchmark result

6-10x speedup over leading 
commercial modeling 
software in multi-thread 
setting



2. Efficient solving: sequential decomposition of large-scale 
business optimization model

min 𝑓 𝒙
𝑠. 𝑡. 𝑨𝒙 = 𝒃

𝒙 ≥ 0

Data integration

Business 
Data

Mathematical 
Optimization Model

Modeling Solving

Business Decision
(such as production 

order)

𝑥1 = 1
𝑥2 = 2

.......

Solution

Algebraic Modeling System 
(AMS)

Real business scenarios

How to do this 
efficiently?



Why business optimization models are so 
large?
• Sequential, dynamic decision making
• The number of variables are in direct proportion to the decision horizons 𝑇

• E.g., when we have 10K decision variable in a single period, we will need 10K * 100 = 
1M variables for 100 periods (𝑇 = 100)

• Can we partition the periods (rolling horizon)?
• Yes, but the decision will be very short-sighted, thus global optimality will be lost



Forward Rolling Horizon

• Divide the model into h sub-
models

• Add “aggregated information” to 
the end of the sub-model.
• E.g., when we solve the sub-

problem in 1-4 period, we 
aggregate the information in 5-16 
period into 1 period, and attach it 
to the end of the sub-problem as a 
“virtual” period 5.

Aggregated info as a 
“virtual” period 5



Our Proposed Method: Guided Rolling 
Horizon
• First, aggregate all data into h 

periods

• Then, solve a “master problem” 
of h periods with aggregated 
data

• Finally, solve h sub-problems 
sequentially. Add a soft 
constraint that the sub-problem 
should be aligned with the 
master problem as much as 
possible.



Guided Forward Rolling Horizon

• Forward Rolling Horizon + 
Guided Rolling Horizon



Fine-tuning of approximated solutions

• In reality, we are more 
concerned about the decision 
variables in first several periods, 
since they need to be executed 
soon.

• When we have an approximated
feasible solution, we can
“release” the variables in first 
several periods and fix the 
others, and re-optimize the 
model in the full horizon.



Online experiments on Huawei supply chain 
scenario

20x speed acceleration (4000s → 200s) 
with optimality loss of only 3.6‰

The optimality loss can be further reduced 
to 3.3‰ with fine-tuning



Grassland in business practice

• Cooperated with Huawei Cloud, 
Grassland will be integrated as 
the default modeling system of 
Huawei OptVerse AI Solver
• https://www.huaweicloud.com/pr

oduct/modelarts/optverse.html

https://www.huaweicloud.com/product/modelarts/optverse.html


Thank you!
Xihan Li

Department of Computer Science, 

University College London

xihan.li@cs.ucl.ac.uk

https://snowkylin.github.io

mailto:xihan.li@cs.ucl.ac.uk
https://snowkylin.github.io/

