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Mathematical Optimization:
Booster of Global Economy
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Mathematical optimization pipeline for
practical business decision making scenarios

Real business scenarios

o i Business Decision
Data integration l (such as production
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Algebraic Modeling System

(AMS) Huge model with

millions of variables
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Huawei’s Supply Chain Scenario:
Supply-Demand Analysis

(((40) ==
‘. Demand Products
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De";a"d of supply and Analysis Assist Durch
~10 demand (modeling and solving LIEEES
of mathematical ‘ Produce
optimization models Transport
Semi-Finished _ Supply .

~105 with millions of
variables, has to be
completed in minutes)

Replacement
Products (50K +)

Complex
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i Relationship * Demand fulfillment ratio
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(10K+) materials

Complex business
rules like replacement % ...

and priority
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Real business scenarios

Business Decision
Data integration (such as production
& 'I' mmiR E(ID% order)

How to do this
efficiently?
Modellng min f (x) | Solving x =1 ‘:
X, =2 '
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Mathematical
Optlmlzatlon Mode}
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Algebraic Modeling System
(AMS)

1. Efficient modeling: A fast algorithm to instantiate millions of
linear constraints in optimization



A simple mathematical optimization example:
balance constraint of network flow model

Iterate through alli € V

i = 1, iterate throughall (1,j) € Eand (i,1) € E

constraint1: x;, +x;3 =1
V=1{1,234}

8 g i = 2,iterate through all (2,j) € Eand (i,2) € E
E=|(24) constraint 2: x, 4 — X1, — X3, =0
(3,2)
3.4 i = 3,iterate through all (3,j) € Eand (i,3) € E
S =[1,0,0,—1] - _
constraint 3: x3, + x34 —x33 =0
i = 4,iterate through all (4,j) € Eand (i,4) € E
constraint i: Z Xii— Z Xji =S, VieV constraint 4: —x, , — X3, = —1
(i,j)EE (Ji)€EE ’ ’

O(|V||E|) time complexity!
Cannot work when we have millions of
vertices and edges
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Efficient Model Instantiation

V=1(1,234) e constraint 1: +x;, +x;3 =1
8 g « constraint2: +x,4 — X1, —x3, =0
E=|24% * constraint3: +x3, + X3, —x;3 =10
g 423 * constraint4: —x,, —x3, = —1
S =[1,0,0,—1]
constrainti: + Xij— 2 Xji =Ss,VieV
(i,j)EE (j,i))EE
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Efficient Model Instantiation

constraint i: + Xij — E Xji =S, ViEV
(i,j)EE (JDEE
+ z Xi j I+x1,2 +X13 X4 | tX32 X34
(i,j)EE
_ 2 X; ; & —X1,2 ? —X1,3 ) —X2,4 ‘ —X32 || X34 J
(j,hee |
constraint 1: [ +x,, +x;3 =1
Vv ={1,2,3,4} constraint 2: —X12 tX24 —X3 =0
(1,2)
(1,3) constraint 3: —X13 tX35 X34 =0
E = (2'4) .
(3.2) constraint 4: —Xp4 —X34 =—-1
X
S =[1,0,0,—1] O(|E|) time complexity!
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Parallelization of the model instantiation

constraint i: + Xij — Z Xji =S, ViEV
(i,j)€EE (J,DEE
(1 2)] (1 2)]
(1 3) (3 2) iy
Data partition
Eout = (20 4) y Ein = (1 3) P
(3 2) (2 4)
(3 4). (3 4).
(1 2)] _
gl 1 _ (1’ 2)
V= (1234 CPU1: E;)y = | (L 3)|,E;, = (3 2)
(1,2) (2 4)
29 N (1 3)
E=|(24) ) ’
8423 CPU 2: Eozut = Eg: 4213 rEizn = (2 4)
S =1[1,0,0,—1] ] (3 4)




Parallelization of the model instantiation
algorithm

constraint i: + Xij — E Xji =S, ViEV
(i,j)EE (J,DEE
CPU 1 ] CPU 2
s
a
CPU1 | CPU 2
V=23 el [+, s R e

(1,2)

(1,3) c2: LM =0 i c4: —X24 TX34 =—-1
E=|(24 |

(3,2)
3.4
S =[1,0,0,—1]
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Offline benchmark result

P-Medi Offshore Food
UM Wind Farming Manufacture I .

Gurobi Py API 410.20 533.71 744.39 6-10x speedup over leading

JuMP 278.08 169.08 789.86 H H

ZIMPL 174.00 400.47 399.16 CommerC|a| mOdeIIng

AMPL 15.94 17.71 3165 software in multi-thread
Grassland (S) 35.91 18.85 80.83 .
Grassland (M) 2.09 1.67 5.28 settl ng

Table 1: Model Instantiation Benchmark. Total time (in sec-
onds) to process the model definition and produce the out-
put file in CPLEX LP format.
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Figure 6: Offline model instantiation benchmark on (a) P-Median (b) Offshore Wind Farming (c
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Real business scenarios

Business Decision

Data integration ]E“T A F EL% (such asrzggluction ]
i] 4 \
n 7t \
7’ AY

How to do this
efficiently?

U
Modeling; min f(x)

s.t.Ax=D>b
[ x>0
. 1
I Mathematical Solution I
timization Model 4,'
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Algebraic Modeling System
(AMS)

2. Efficient solving: sequential decomposition of large-scale
business optimization model



Why business optimization models are so
large?

e Sequential, dynamic decision making

* The number of variables are in direct proportion to the decision horizons T

* E.g., when we have 10K decision variable in a single period, we will need 10K * 100 =
1M variables for 100 periods (T = 100)

e Can we partition the periods (rolling horizon)?
* Yes, but the decision will be very short-sighted, thus global optimality will be lost

A]XlT = bl

A, [x1,x]7 = by
T _

AT [Xln XZ: e :XT] - bT
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Forward Rolling Horizon

e Divide the model into h sub-
models

* Add “aggregated information” to “virtual” period 5

the end of the sub-model. seo o [

* E.g., when we solve the sub- I
Sub Problem 2 ----

problem in 1-4 period, we EEEE
aggregate the information in 5-16
period into 1 period, and attach it (a) Forward RH (FRH), [8]

to the end of the sub-problem as a
“virtual” period 5.

Aggregated info as a

M ass
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Our Proposed Method
Horizon

* First, aggregate all data into h
periods

* Then, solve a “master problem”
of h periods with aggregated
data

* Finally, solve h sub-problems
sequentially. Add a soft
constraint that the sub-problem
should be aligned with the
master problem as much as
possible.

. Guided Rolling

(b) Guided RH

Mag®
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Guided Forward Rolling Horizon

* Forward Rolling Horizon +
Guided Rolling Horizon

mmmmm

(c) Guided FRH




Fine-tuning of approximated solutions

* In reality, we are more
concerned about the decision
variables in first several periods,
since they need to be executed
soon.

* When we have an approximated
feasible solution, we can
“release” the variables in first
several periods and fix the
others, and re-optimize the
model in the full horizon.

fixed variables

Figure 5: The fine-tuning procedure. The grey variables are
fixed while the green variables are to be re-optimized. State
variables whose value are determined by other variables
keep free in the whole sequence.
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Online experiments on
scenario
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Grassland in business practice

e Cooperated with Huawei Cloud,

Grassland will be integrated as ropicien | || ||

the default modeling system of .
H Representation JSON-based IR Language)

Huawei OptVerse Al Solver

* https://www.huaweicloud.com/pr —
oduct/modelarts/optverse.html

(Generate executable plan for
the raw problem)

Grassland Parallel Model Instantiation Engine

Splitting [ lterator [ Distributor Execution Layer

(solve sub-problems in the
plan)

Solver SCIP clp MOSEK | |

Hardware Multi-core CPUs
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https://www.huaweicloud.com/product/modelarts/optverse.html

Thank you!

Xihan Li
Department of Computer Science,
University College London
xihan.li@cs.ucl.ac.uk

https://snowkylin.github.io
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