

Online PCA in Converging Self-consistent Field Equations

Xihan Li¹, Xiang Chen², Rasul Tutunov³, Haitham Bou Ammar³, Lei Wang⁴, Jun Wang¹

¹University College London

²Huawei Noah's Ark Lab

³Huawei R&D U.K.

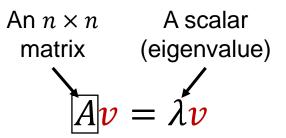
⁴Institute of Physics, Chinese Academy of Sciences

Speaker: Xihan Li

NeurIPS 2023

Problem Setting

Eigen Decomposition

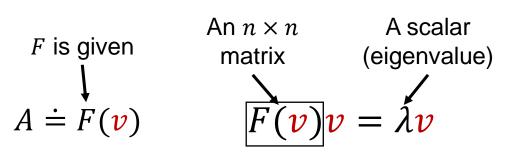


Eigen decomposition: given matrix A, find a vector v (eigenvector) and a scalar λ (eigenvalue) to satisfy the above equation

E.g., given $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$, we can do standard eigen decomposition to get a vector $v = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and a scalar $\lambda = 3$ so that $\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 3 \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

Problem Setting

What will happen if matrix A is not directly given, but A is a given function of v?



Eigen decomposition cannot be directly applied anymore!

Self-consistent Field Equation (Important in Quantum Physics!) $H|\Psi\rangle = E|\Psi\rangle$

→ To obtain v, eigen decomposition needs $A \rightarrow A$ comes from $F(v) \rightarrow$ we need to obtain v

Traditional Methods

Self-consistent Field method (fixed point iteration) for solving $F(v)v = \lambda v$

Assign an initial $v_0 \xrightarrow{F_0 = F(v_0)} F_0 \xrightarrow{F_0 v_1 = \lambda v_1} v_1 \longrightarrow F_1 \longrightarrow v_2 \longrightarrow \dots$ (until convergence)

Problem: easily fails to converge (infinite oscillation between two or more states)

$$\cdots \longrightarrow \underbrace{v'}_{} \longrightarrow F' \longrightarrow v''_{} \longrightarrow F'' \longrightarrow \underbrace{v'}_{} \longrightarrow \cdots$$
Repeat infinitely

Two current main research directions:

- 1. Generate a better initial solution v_0
- 2. Mix F_t with those in previous iterations F_{t-1} , F_{t-2} , ... to stabilize the iteration

We propose a third direction with the aid of machine learning techniques

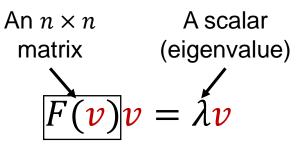
Motivation

We find a connection between two very different problems in different fields

Infinite

oscillation

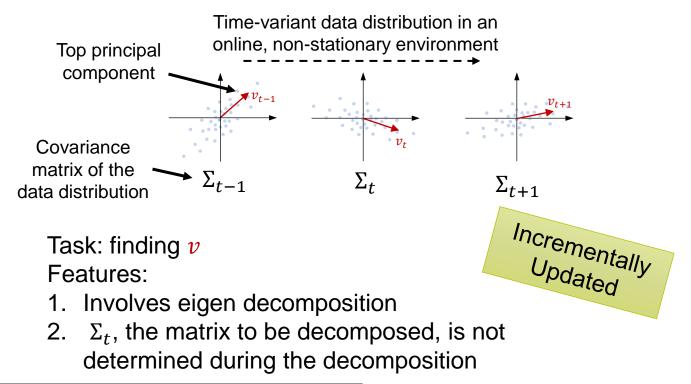
Self-consistent Field Equation



Task: finding vFeatures:

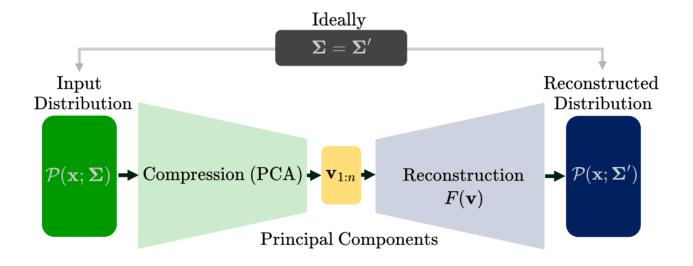
- 1. Involves eigen decomposition
- 2. F(v), the matrix to be decomposed, is not determined during the decomposition

Online PCA



Can we use Online PCA to resolve the infinite oscillation issue of SCF equation solving?

Our Method



• $F(v)v = \lambda v$ is to say, if we have a matrix Σ , then

1. Decompose Σ to get its top eigenvector v

2. Compute a new matrix $\Sigma' = F(v)$

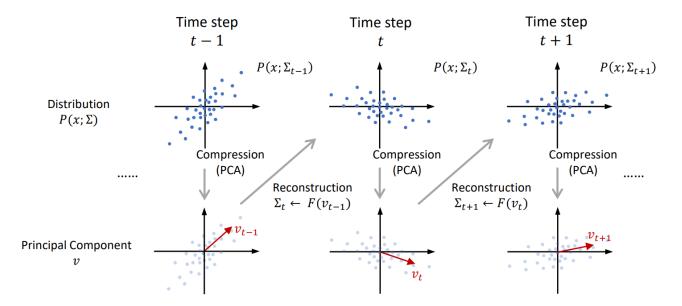
Then we will have $\Sigma' = \Sigma$

New interpretation:

----- "compress" Σ with PCA to have v

— "reconstruct" Σ from v with $F(\cdot)$

Our Method



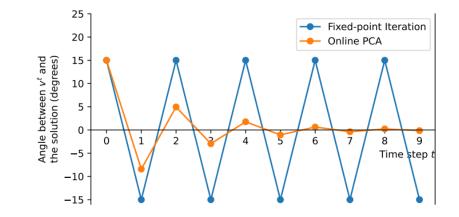
Then, the fixed-point iteration $v_0 \rightarrow F_0 \rightarrow v_1 \rightarrow F_1 \rightarrow \cdots$ can be regarded as

Compress (PCA) \rightarrow reconstruct \rightarrow compress (PCA) \rightarrow reconstruct \rightarrow ...

We are continuously running PCA in a non-stationary environment!

Now we can apply Online PCA to update *v* incrementally to avoid infinite oscillation

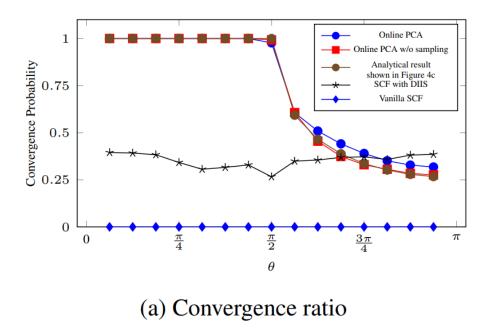
Our Method

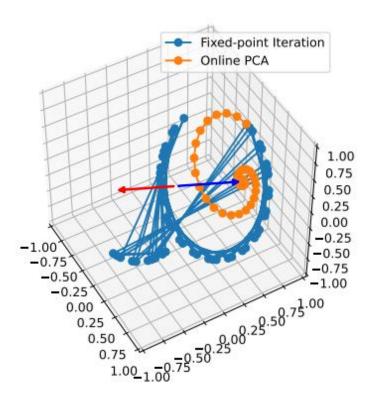


Then, the fixed-point iteration $v_0 \rightarrow F_0 \rightarrow v_1 \rightarrow F_1 \rightarrow \cdots$ can be regarded as Compress (PCA) \rightarrow reconstruct \rightarrow compress (PCA) \rightarrow reconstruct $\rightarrow \cdots$

We are continuously running PCA in a non-stationary environment! Now we can apply Online PCA to update v incrementally to avoid infinite oscillation

Experiment

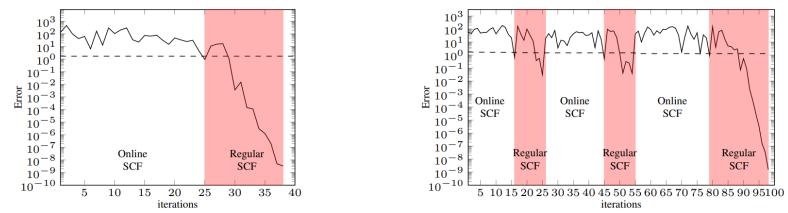




- Case study: solve $(Avv^{\top}A^{\top})v = \lambda v$
 - Vanilla fixed-point method: does not work at all (0% convergence ratio)
 - DIIS: ~40% convergence ratio
 - Online PCA: the top curves, half has 100% convergence ratio

Experiment

Methods	Hartree-Fock			DFT with B3LYP		
	#(Nonconverged		Average	#(Nonconverged		Average
	molecules)		#(iterations)	molecules)		#(iterations)
Regular SCF	124	(9.27%)	25.49	407	(30.42%)	21.09
Full Online SCF	13	(0.97%)	584.68	217	(16.22%)	1835.24
Adaptive Online SCF	0	(0%)	42.97	0	(0%)	60.58



- For real-world SCF equations such as Hartree-Fock and DFT, our proposed method with adaptations (Online SCF) can also achieve high convergence ratio with a moderate increase of iterations.
- We also proposed an adaptive switching mechanism between online and regular mode, to balance efficiency and convergency.

Thank you!

Xihan Li

Department of Computer Science, University College London

Email: <u>xihan.li@cs.ucl.ac.uk</u> Webpage: <u>https://snowkylin.github.io</u>

