

Xihan Li¹, Xiang Chen², Rasul Tutunov³, Haitham Bou Ammar³, Lei Wang⁴, Jun Wang¹ ¹University College London ²Huawei Noah's Ark Lab ³Huawei R&D U.K. ⁴Institute of Physics, Chinese Academy of Sciences

Scan for the full paper

Problem Setting

This is called eigen decomposition:

What will happen if matrix A is not directly given, but a given function of v?

Eigen decomposition cannot be directly applied anymore!

Equations in such form are called Self-consistent Field Equations They are important in Quantum Physics!

$H|\Psi\rangle = E|\Psi\rangle$

Traditional Methods

Assign an initial $v_0 \xrightarrow{F_0 = F(v_0)} F_0 \xrightarrow{F_0 v_1 = \lambda v_1} v_1 \longrightarrow F_1 \longrightarrow v_2 \longrightarrow \dots$ (until convergence)

Easily fails to converge (infinite oscillation between two or more states) Two current main research directions:

- 1. Generate a better initial solution v_0
- 2. Mix F_t with those in previous iterations F_{t-1} , F_{t-2} , ... to stabilize the iteration

Online PCA in Converging Self-consistent Field Equations

Motivation

We find a connection between two very different problems in different fields

Our Method

 $F(\mathbf{v})\mathbf{v} = \lambda \mathbf{v}$ is to say, if we have a matrix Σ , then Step 1: Decompose Σ to get its top eigenvector vNew interpretation: "compress" Σ with PCA to have vStep 2: Compute a new matrix $\Sigma' = F(v)$ New interpretation: "reconstruct" Σ from v with $F(\cdot)$ Then we will have $\Sigma' = \Sigma$

Equivalent Target: finding a distribution that is invariant before and after being processed by an auto-encoder structure involving PCA.

For real-world SCF equations such as Hartree-Fock and DFT, our proposed method with adaptations (Online SCF) can also achieve high convergence ratio with a moderate increase of iterations. We also proposed an adaptive switching mechanism between online and regular mode, to balance efficiency and convergency.

Then, the fixed-point iteration $v_0 \rightarrow F_0 \rightarrow v_1 \rightarrow F_1 \rightarrow \cdots$ can be regarded as

Compress (PCA) \rightarrow reconstruct \rightarrow compress (PCA) \rightarrow reconstruct \rightarrow ...

We are continuously running PCA in a non-stationary environment!

Now we can apply Online PCA to **update** *v* **incrementally** to avoid

(a) Convergence ratio

Case study: solve $(Avv^{\top}A^{\top})v = \lambda v$

• Vanilla fixed-point method: does not work at all (0% convergence) • DIIS: ~40% convergence ratio

• Online PCA: the top curves, half has 100% convergence ratio

Methods	Hartree-Fock			DFT with B3LYP		
	#(Nonconverged		Average	#(Nonconverged		Average
	molecules)		#(iterations)	molecules)		#(iterations)
Regular SCF	124	(9.27%)	25.49	407	(30.42%)	21.09
Full Online SCF	13	(0.97%)	584.68	217	(16.22%)	1835.24
Adaptive Online SCF	0	(0%)	42.97	0	(0%)	60.58

Results on 1,338 randomly sampled molecules in QM9 dataset. All methods are initialized with core Hamiltonian and accelerated by DIIS